Continual Learning for Image Classification and Object Detection

Eden Belouadah

eb@datakalab.com

April 20th, 2023

< □ > < 同 > < 回 > < Ξ > < Ξ

Continual Learning

三日 のへで

イロト イヨト イヨト イヨ

Application examples of continual learning

Robotics

Autonomous cars

Face Recognition

Health

Catastrophic forgetting

Tendency of neural networks to underfit past data when new one is ingested

Three Scenarios of Continual Learning

三日 のへの

< □ > < □ > < □ > < □ > < □ >

Incremental Learning with memory

Incremental Learning without memory

Memory reduces prediction bias towards new classes

Mean prediction scores of past and new classes with vanilla fine tuning

Table of Contents

- 1. State of the art
- 2. Class-incremental learning with memory
 - 2.1 DeeSIL: Deep-Shallow Incremental Learning
 - 2.2 IL2M: Incremental Learning with Dual memory
 - 2.3 ScalL: Classifier weights Scaling for Class IL
- 3. Class-incremental learning without memory
 - 3.1 SIW: Standardization of Initial Weights for Class IL
 - 3.2 TransIL: Dataset Knowledge Transfer for Class IL
- 4. Continual Learning for Object Detection on the Edge
 - 4.1 Context Adaptation with Continual Learning
- 5. Experiments and Results
- 6. Conclusions and future work

ELE OQO

• • • • • • • • • • •

1. State of the art

Eden BELOUADAH

April 20th, 2023 9 / 60

三日 のへの

・ロト ・回ト ・ヨト ・ヨト

[Schema inspired by Lange et al., 2019]

[References are in appendix slides]

	Complexity	Memory	Accuracy	Timeliness	Plasticity- Stability	Scalability
Fine tuning based	Increases slowly	The bigger the memory, the better the model	Best SoTA results with memory	Retraining is needed at each state	Depends on the availability of the memory	Depends on the size of the memory
Fixed representation based	Increases slowly	Low dependency	Good if the initial model is trained on large dataset	Fast	Bad if incremental classes are different from the initial ones	Heavily depends on the fixed representation
Parameter isolation based	Depends if fixed or dynamic network	Non compulsory	Depends on how much the model architecture can increase	Retraining is needed at each state	Good	Scale well if resources are available

LwF: Learning without Forgetting (Li and Hoiem, 2016)

• Fine Tuning with distillation loss

$$\mathcal{L}_{t}^{d}(x) = \sum_{(x,y) \in \mathcal{D}_{t}} \sum_{j=1}^{N_{t-1}} -\hat{\sigma}_{t-1}^{j}(x) \log[\hat{\sigma}_{t}^{j}(x)]$$
(1)

where $\hat{\sigma}$ is the softened softmax

(+) No memory of the past is needed
 (-) The gap with a *Joint* training is large

iCaRL: Incremental Classifier and Representation Learning (Rebuffi et al., 2017)

- *LwF* with memory
- Herding to select exemplars

$$e \leftarrow \operatorname*{arg\,min}_{x \in X} \|\mu - \frac{1}{k} [f(x) + \sum_{j=1}^{k-1} f(e_j)]\|$$
 (2)

• Nearest Exemplars Mean (NEM)

$$y^{*} = \underset{y \in [1, N_{t}]}{\arg \min} \|f(x) - \mu_{y}\|$$
(3)

LUCIR: Learning a Unified Classifier Incrementally via Rebalancing (Hou et al., 2019)

- Cosine normalization
- Less-forget constraint
- Inter-class separation
 - (+) Powerful objective
 (-) Important execution time

BiC: Bias Correction (Wu et al., 2019)

- Distillation loss
- Bias-removal layer

$$BiC(\boldsymbol{o}_{t}^{k}) = \begin{cases} \boldsymbol{o}_{t}^{k} & \text{if } k \in [1, t-1] \\ \alpha_{t}\boldsymbol{o}_{t}^{k} + \beta_{t} \cdot \boldsymbol{1} & \text{if } k = t \end{cases}$$
(4)

(+) Simple, fast, and accurate
 (-) Uses a validation set (memory required)

2. Class-incremental learning with memory

1= 9Q@

メロト メロト メヨト メヨ

Class-Incremental Learning with memory DeeSIL: Deep-Shallow Incremental Learning (W-ECCV 2018)

DeeSIL: Deep-Shallow Incremental Learning (Belouadah and Popescu, 2018, W-ECCV)

- Fixed Representation based
- Inspired by transfer learning
- Works with and without memory

Class-Incremental Learning with memory IL2M: Incremental Learning with Dual memory (ICCV 2019)

- IL2M: Incremental Learning with Dual memory (Belouadah and Popescu, 2019, ICCV)
- Fine Tuning based
- Leverages past class statistics

Eden BELOUADAH

• Past class score rectification

For all past classes $(j = 1, \ldots, N_{t-1})$:

$$\sigma_t^{j'} = IL2M(\sigma_t^j) = \begin{cases} \sigma_t^j \times \frac{\mu_t^j}{\mu_t^j} \times \frac{\mu(\mathcal{M}_t)}{\mu(\mathcal{M}_i)}, & \text{if } pred = new \\ \sigma_t^j, & \text{otherwise} \end{cases}$$
(5)

with:

- *i* the initial state in which the j^{th} class was learned
- t the current incremental state
- o_t^j the raw prediction the j^{th} class in the current state t
- $\blacktriangleright \ \mu_i^j$ and μ_t^j the mean classification scores of the j^{th} class in states i and t
- ▶ $\mu(\mathcal{M}_t)$ and $\mu(\mathcal{M}_i)$ the model mean score in states t and i

Class-Incremental Learning with memory IL2M: Incremental Learning with Dual memory (ICCV 2019)

• Effect of *IL2M*

イロト イヨト イヨト イ

Class-Incremental Learning with memory ScalL: Classifier weights Scaling for Class IL (WACV 2020)

ScalL: Classifier weights Scaling for Class IL (Belouadah and Popescu, 2020, WACV)

- Fine Tuning based
- Forgetting happens mainly in the final layer
- Features are usable across incremental states

• Past class weights replay

Overview of ScalL

イロト イ団ト イヨト イヨ

• Sort class weights

$$\widehat{W}_{t}^{j} = sort(|w_{j}^{1}|, |w_{j}^{2}|, ..., |w_{j}^{d}|, ..., |w_{j}^{D}|) \; ; j \in [N_{t-1}, N_{t}], d \in [1, D] \; (6)$$

 \widehat{W}_t^j is the sorted version of the initial weights vector of new class j.

• Compute state mean vector

$$\mu_t^d = \frac{1}{P_t} \times \sum_{j=N_{t-1}}^{N_t} \widehat{w}_j^d \qquad d \in [1, D]$$
(7)

where μ_t (of dimension *D*) is the mean vector of the ranked new classes' weights in the state S_t , and *d* is a dimension in the feature vector.

Class-Incremental Learning with memory ScalL: Classifier weights Scaling for Class IL (WACV 2020)

• Normalize past class weights

$$w_j^{d'} = \frac{\mu_t^{R(d)}}{\mu_i^{R(d)}} \times w_j^d \tag{8}$$

 $w_j^{d'}$ is the scaled version of w_j^d , the d^{th} dimension of the initial classifier W_i^j of the j^{th} past class.

• Effect of ScalL

Eden BELOUADAH

2. Class-incremental learning without memory

三日 のへの

メロト メロト メヨト メヨ

Class-Incremental Learning without memory SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

SIW: Standardization of Initial Weights for Class Incremental Learning (Belouadah et al., 2020, BMVC)

- Fine Tuning based
- Bias in the mean weights magnitudes

Mean weights magnitudes without memory

< □ > < 同 >

Class-Incremental Learning without memory SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

• Past class weights replay

Overview of SIW

Image: A math the second se

Class-Incremental Learning without memory SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

• Classifier weights distribution

• Standardization of Initial Weights

$$w'_{d} = \frac{w_{d} - \mu(\boldsymbol{W})}{\sigma(\boldsymbol{W})}$$
(9)

with:

 w_d is the d^{th} dimension of an initial classifier W, $\mu(W)$ and $\sigma(W)$ are the mean and standard deviation of W.

• State-level calibration

$$\sigma_t^j(\mathbf{x}) = (\mathbf{f}_t(\mathbf{x}) \cdot \mathbf{W}_t^{j'} + b_j^i) \times \frac{\mu(\mathcal{M}_t)}{\mu(\mathcal{M}_i)}$$
(10)

 $\mu(\mathcal{M}_t)$ and $\mu(\mathcal{M}_i)$ are means of top-1 predictions of models learned in the t^{th} and i^{th} states

イロト (周) (ヨト (ヨト) 三日 ののの

• Effect of SIW on weights magnitudes

Image: A math a math

Class-Incremental Learning without memory TransIL: Dataset Knowledge Transfer for Class IL (WACV 2022)

TransIL: Dataset Knowledge Transfer for Class IL (Slim et al., 2022, WACV)

- Fine Tuning based
- Bias in the mean classification scores after LwF and LUCIR

Mean prediction scores and standard deviation

EL OQO

イロト イヨト イヨト イヨト

Enable the use of Bias Correction layers in a memoryless scenario

• <u>BiC</u> : Bias Correction (Wu et al., 2019)

$$BiC(\boldsymbol{o}_{t}^{k}) = \begin{cases} \boldsymbol{o}_{t}^{k} & \text{if } k \in [1, t-1] \\ \alpha_{t}\boldsymbol{o}_{t}^{k} + \beta_{t} \cdot \mathbf{1} & \text{if } k = t \end{cases}$$
(11)

イロト イヨト イヨト

• <u>adBiC</u> : Adaptive Bias Correction (proposed)

$$adBiC(\boldsymbol{o}_{t}^{k}) = \alpha_{t}^{k}\boldsymbol{o}_{t}^{k} + \beta_{t}^{k} \cdot \mathbf{1} ; \quad k \in [1, t]$$

$$(12)$$

where α_t^k , β_t^k are the parameters applied in state S_t to classes first learned in state S_k .

(日) (四) (日) (日) (日)

Class-Incremental Learning without memory TransIL: Dataset Knowledge Transfer for Class IL (WACV 2022)

• Dataset knowledge transfer

• Effect on classification scores

A (1) > A (2) > A
三日 のへで

・ロト ・回ト ・ヨト ・ヨト

Context Adaptation with Continual Learning

Object Detection: From generic to specific

 Adapt pretrained models to specialized domains (fixed camera, few set of classes, fixed context...)

Object Detector

Input Image

Prediction

Source dataset

Target dataset

Context Adaptation with Continual Learning

Challenges

- Data is not annotated
- Limited resources in memory and computational power
- Overfitting
- Catastrophic Forgetting (Mccloskey and Cohen, 1989)
- Domain shift, low image resolution ...etc

Source dataset

Target dataset

Context Adaptation with Continual Learning

Classical solution: infer a large model on the cloud

- ► (+) Excellent performance
- (+) Straight forward deployment
- ▶ (-) Data sent to the cloud \rightarrow not GDPR compliant
- ► (-) Frequent internet access
- ► (-) High cost

Context Adaptation with Continual Learning

Wanted solution: infer tiny model on the edge

- (+) Straight forward deployment
- ► (+) GDPR compliant
- ► (+) No internet access
- ► (+) Low cost
- ► (-) Very poor performance

ELE DOG

イロト イ団ト イヨト イヨト

Context Adaptation with Continual Learning

Solution 1: run both large and tiny model on the edge

- ► (+) Good performance
- (+) GDPR compliant
- (+) No internet access
- ► (+) Low cost
- ► (-) Assumes that the large model can fit the edge device

ヨヨー わすゆ

Context Adaptation with Continual Learning

Solution 2: run only part of large model on the edge

- ► (+) Good performance
- (+) GDPR compliant
- (+) Energy consumption
- ► (-) Frequent internet access
- (-) Cloud cost

Experiments and Results

三日 のへで

メロト メロト メヨト メヨト

• Evaluation of DeeSIL, IL2M, ScalL, and SIW

Dataset	#Train	#Test	#Classes	$\mu(train)$	$\sigma(train)$
ILSVRC (Russakovsky et al., 2015)	1,231,167	50,000	1,000	1231.2	70.2
VGGFACE2 (Cao et al., 2018)	491,746	50,000	1,000	491.7	49.4
LANDMARKS (Noh et al., 2017)	374,367	20,000	1,000	374.4	103.8
CIFAR-100 (Krizhevsky, 2009)	50,000	10,000	100	500.00	0.00

Summary of the datasets used for evaluation

- Architecture: a ResNet-18 network
- ▶ Memory size : |K| = {2%, 1%, 0.5%} of the training set, and no memory.
- Number of states: $T = \{10, 20, 50\}$

• Evaluation of TransIL

10 Reference datasets

10 ra	10 random 100 leaf classes from ImageNet (Deng et al., 2009)								
Train	500 images per class								
Val	200 images per class								

4 Test datasets

CIFA	CIFAR-100 (Krizhevsky, 2009), IMN-100 (Deng et al., 2009),									
BIRDS	-100 (Deng et al., 2009), FOOD-100 (Bossard et al., 2014)									
Train	500 images per class									
Test	100 images per class									

- Architecture: a ResNet-18 network
- No memory of the past
- Number of states: $T = \{5, 10, 20\}$

Evaluation of Object Detection Model

Dataset	Total hours	# splits	# train (mn)	# val (mn)	classes		
	10	10 40		20	car		
Set	Total frames	1 frame p	er second 1 f	1 frame per two seconds			
Train	72000	12	00	600			
Val	36000	×	<	300			

Morning view

Night view

- Large model: YOLO-V4
- Small model: MobileNet-V1 + SSD with FPN

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

• Class-IL baselines - with memory

Method	works without memory?
FT	\checkmark
FR	\checkmark
<i>iCaRL</i> (Rebuffi et al., 2017)	LwF (Li and Hoiem, 2016)
LUCIR (Hou et al., 2019)	\checkmark
<i>BiC</i> (Wu et al., 2019)	×
REMIND (Hayes et al., 2019)	\checkmark

• Class-IL baselines - without memory

- FT, FR, LwF (Li and Hoiem, 2016), LUCIR (Hou et al., 2019), REMIND (Hayes et al., 2019)
- ► *FT*+ (Masana et al., 2021)
- Deep-SLDA (Hayes and Kanan, 2019)

- Plugins applied on top of Class-IL FT
 - ▶ init use of initial classifiers of past classes (used in *ScalL* and *SIW*)
 - L2 L2 normalization of the weights matrix
 - mc mean state calibration (used in IL2M and SIW)
 - th threshold calibration (Buda et al., 2018)
 - **BAL** balanced fine tuning (Castro et al., 2018)
 - ▶ NEM nearest exemplars mean (Rebuffi et al., 2017)
- Upper bound of Class IL
 - Joint full training with all data

(日) (同) (三) (三) (三) (○) (○)

- Class-IL Evaluation metrics
 - Average incremental accuracy (Castro et al., 2018)
 - ► *G_{IL}* aggregation measure

$$G_{IL} = \frac{1}{C} \times \sum_{c=1}^{C} \frac{A(c) - A(Joint)}{A_{max} - A(Joint)}$$
(13)

C - number of tested configurations; A(c) - accuracy of each configuration ; A(Joint) - accuracy of *Joint* ; $A_{max} = 100$

- Object Detection metric
 - Mean Average Precision at [0.5:0.05:0.95] IoU thresholds

States		$\mathcal{T}=10$												
Dataset		ILSVRC		V	GGFACI	E2	LAI	NDMAF	RKS	CIFAR-100				
$ \mathcal{K} $	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%		
iCaRL	79.3	76.5	71.0	96.0	95.3	93.9	95.1	94.0	91.8	66.5	56.1	47.9		
FT	79.4	74.4	65.9	96.4	94.5	91.3	96.6	94.7	91.4	82.4	77.9	70.7		
FT+init	79.2	76.5	73.0	95.9	95.2	94.6	97.0	95.5	92.7	83.4	80.5	75.2		
FT+NEM	81.4	79.0	75.0	96.4	95.4	94.0	96.1	94.6	92.6	85.1	81.7	76.0		
FT+BAL	84.0	80.9	76.5	97.0	95.7	92.4	96.9	95.3	92.2	80.0	74.0	69.0		
FT+th	84.3	82.1	78.3	97.2	96.3	94.8	97.2	95.8	94.0	86.4	83.9	79.1		
LUCIR	79.9	76.4	72.6	97.2	96.9	96.5	97.2	96.6	96.1	79.8	75.4	69.9		
BiC	85.5	82.8	79.7	97.3	96.6	95.7	97.9	97.3	96.6	88.8	87.6	83.5		
ScalL	82.0	79.8	76.6	96.5	95.8	95.2	97.3	96.0	94.0	85.6	83.2	79.1		
IL2M	80.9	78.1	73.9	96.7	95.4	93.4	96.5	94.7	92.5	81.8	77.0	71.2		
FR	76.7	76.6	76.4	91.7	91.5	89.7	93.8	93.5	93.5	79.5	79.4	78.7		
DeeSIL	75.5	75.1	74.3	92.7	92.5	92.2	94.0	93.7	93.2	66.9	65.8	64.2		
REMIND	80.9	80.7	78.2	94.7	93.2	93.0	96.3	95.8	94.7	60.7	60.7	60.7		
Joint	92.3			99.2			99.1			91.2				

States						\mathcal{T} =	= 10					
Dataset		ILSVRC	,	V	GGFACI	E2	LA	NDMAF	RKS	CIFAR-100		
$ \mathcal{K} $	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%
iCaRL	79.3	76.5	71.0	96.0	95.3	93.9	95.1	94.0	91.8	66.5	56.1	47.9
FT	79.4	74.4	65.9	96.4	94.5	91.3	96.6	94.7	91.4	82.4	77.9	70.7
FT+init	79.2	76.5	73.0	95.9	95.2	94.6	97.0	95.5	92.7	83.4	80.5	75.2
FT+NEM	81.4	79.0	75.0	96.4	95.4	94.0	96.1	94.6	92.6	85.1	81.7	76.0
FT+BAL	84.0	80.9	76.5	97.0	95.7	92.4	96.9	95.3	92.2	80.0	74.0	69.0
FT+th	84.3	82.1	78.3	97.2	96.3	94.8	97.2	95.8	94.0	86.4	83.9	79.1
LUCIR	79.9	76.4	72.6	97.2	96.9	96.5	97.2	96.6	96.1	79.8	75.4	69.9
BiC	85.5	82.8	79.7	97.3	96.6	95.7	97.9	97.3	96.6	88.8	87.6	83.5
ScalL	82.0	79.8	76.6	96.5	95.8	95.2	97.3	96.0	94.0	85.6	83.2	79.1
IL2M	80.9	78.1	73.9	96.7	95.4	93.4	96.5	94.7	92.5	81.8	77.0	71.2
FR	76.7	76.6	76.4	91.7	91.5	89.7	93.8	93.5	93.5	79.5	79.4	78.7
DeeSIL	75.5	75.1	74.3	92.7	92.5	92.2	94.0	93.7	93.2	66.9	65.8	64.2
REMIND	80.9	80.7	78.2	94.7	93.2	93.0	96.3	95.8	94.7	60.7	60.7	60.7
Joint	92.3			99.2			99.1			91.2		

States						\mathcal{T} =	= 10					
Dataset		ILSVRC		V	GGFACI	E2	LA	NDMAF	RKS	CIFAR-100		
$ \mathcal{K} $	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%
iCaRL	79.3	76.5	71.0	96.0	95.3	93.9	95.1	94.0	91.8	66.5	56.1	47.9
FT	79.4	74.4	65.9	96.4	94.5	91.3	96.6	94.7	91.4	82.4	77.9	70.7
FT+init	79.2	76.5	73.0	95.9	95.2	94.6	97.0	95.5	92.7	83.4	80.5	75.2
FT+NEM	81.4	79.0	75.0	96.4	95.4	94.0	96.1	94.6	92.6	85.1	81.7	76.0
FT+BAL	84.0	80.9	76.5	97.0	95.7	92.4	96.9	95.3	92.2	80.0	74.0	69.0
FT+th	84.3	82.1	78.3	97.2	96.3	94.8	97.2	95.8	94.0	86.4	83.9	79.1
LUCIR	79.9	76.4	72.6	97.2	96.9	96.5	97.2	96.6	96.1	79.8	75.4	69.9
BiC	85.5	82.8	79.7	97.3	96.6	95.7	97.9	97.3	96.6	88.8	87.6	83.5
ScalL	82.0	79.8	76.6	96.5	95.8	95.2	97.3	96.0	94.0	85.6	83.2	79.1
IL2M	80.9	78.1	73.9	96.7	95.4	93.4	96.5	94.7	92.5	81.8	77.0	71.2
FR	76.7	76.6	76.4	91.7	91.5	89.7	93.8	93.5	93.5	79.5	79.4	78.7
DeeSIL	75.5	75.1	74.3	92.7	92.5	92.2	94.0	93.7	93.2	66.9	65.8	64.2
REMIND	80.9	80.7	78.2	94.7	93.2	93.0	96.3	95.8	94.7	60.7	60.7	60.7
Joint	92.3			99.2 99				99.1 9			91.2	

States						\mathcal{T} =	= 10					
Dataset		ILSVRC		V	GGFACI	E2	LA	NDMAF	RKS	CIFAR-100		
$ \mathcal{K} $	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%
iCaRL	79.3	76.5	71.0	96.0	95.3	93.9	95.1	94.0	91.8	66.5	56.1	47.9
FT	79.4	74.4	65.9	96.4	94.5	91.3	96.6	94.7	91.4	82.4	77.9	70.7
FT+init	79.2	76.5	73.0	95.9	95.2	94.6	97.0	95.5	92.7	83.4	80.5	75.2
FT+NEM	81.4	79.0	75.0	96.4	95.4	94.0	96.1	94.6	92.6	85.1	81.7	76.0
FT+BAL	84.0	80.9	76.5	97.0	95.7	92.4	96.9	95.3	92.2	80.0	74.0	69.0
FT+th	84.3	82.1	78.3	97.2	96.3	94.8	97.2	95.8	94.0	86.4	83.9	79.1
LUCIR	79.9	76.4	72.6	97.2	96.9	96.5	97.2	96.6	96.1	79.8	75.4	69.9
BiC	85.5	82.8	79.7	97.3	96.6	95.7	97.9	97.3	96.6	88.8	87.6	83.5
ScalL	82.0	79.8	76.6	96.5	95.8	95.2	97.3	96.0	94.0	85.6	83.2	79.1
IL2M	80.9	78.1	73.9	96.7	95.4	93.4	96.5	94.7	92.5	81.8	77.0	71.2
FR	76.7	76.6	76.4	91.7	91.5	89.7	93.8	93.5	93.5	79.5	79.4	78.7
DeeSIL	75.5	75.1	74.3	92.7	92.5	92.2	94.0	93.7	93.2	66.9	65.8	64.2
REMIND	80.9	80.7	78.2	94.7	93.2	93.0	96.3	95.8	94.7	60.7	60.7	60.7
Joint	92.3			99.2			99.1			91.2		

States						\mathcal{T} =	= 10					
Dataset		ILSVRC	,	V	GGFACI	E2	LA	NDMAF	RKS	CIFAR-100		
$ \mathcal{K} $	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%
iCaRL	79.3	76.5	71.0	96.0	95.3	93.9	95.1	94.0	91.8	66.5	56.1	47.9
FT	79.4	74.4	65.9	96.4	94.5	91.3	96.6	94.7	91.4	82.4	77.9	70.7
FT+init	79.2	76.5	73.0	95.9	95.2	94.6	97.0	95.5	92.7	83.4	80.5	75.2
FT+NEM	81.4	79.0	75.0	96.4	95.4	94.0	96.1	94.6	92.6	85.1	81.7	76.0
FT+BAL	84.0	80.9	76.5	97.0	95.7	92.4	96.9	95.3	92.2	80.0	74.0	69.0
FT+th	84.3	82.1	78.3	97.2	96.3	94.8	97.2	95.8	94.0	86.4	83.9	79.1
LUCIR	79.9	76.4	72.6	97.2	96.9	96.5	97.2	96.6	96.1	79.8	75.4	69.9
BiC	85.5	82.8	79.7	97.3	96.6	95.7	97.9	97.3	96.6	88.8	87.6	83.5
ScalL	82.0	79.8	76.6	96.5	95.8	95.2	97.3	96.0	94.0	85.6	83.2	79.1
IL2M	80.9	78.1	73.9	96.7	95.4	93.4	96.5	94.7	92.5	81.8	77.0	71.2
FR	76.7	76.6	76.4	91.7	91.5	89.7	93.8	93.5	93.5	79.5	79.4	78.7
DeeSIL	75.5	75.1	74.3	92.7	92.5	92.2	94.0	93.7	93.2	66.9	65.8	64.2
REMIND	80.9	80.7	78.2	94.7	93.2	93.0	96.3	95.8	94.7	60.7	60.7	60.7
Joint	92.3			99.2			99.1			91.2		

States		$\mathcal{T}=10$												
Dataset		ILSVRC		V	GGFACI	E2	LA	NDMAF	RKS	CIFAR-100				
$ \mathcal{K} $	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%	2%	1%	0.5%		
iCaRL	79.3	76.5	71.0	96.0	95.3	93.9	95.1	94.0	91.8	66.5	56.1	47.9		
FT	79.4	74.4	65.9	96.4	94.5	91.3	96.6	94.7	91.4	82.4	77.9	70.7		
FT+init	79.2	76.5	73.0	95.9	95.2	94.6	97.0	95.5	92.7	83.4	80.5	75.2		
FT+NEM	81.4	79.0	75.0	96.4	95.4	94.0	96.1	94.6	92.6	85.1	81.7	76.0		
FT+BAL	84.0	80.9	76.5	97.0	95.7	92.4	96.9	95.3	92.2	80.0	74.0	69.0		
FT+th	84.3	82.1	78.3	97.2	96.3	94.8	97.2	95.8	94.0	86.4	83.9	79.1		
LUCIR	79.9	76.4	72.6	97.2	96.9	96.5	97.2	96.6	96.1	79.8	75.4	69.9		
BiC	85.5	82.8	79.7	97.3	96.6	95.7	97.9	97.3	96.6	88.8	87.6	83.5		
ScalL	82.0	79.8	76.6	96.5	95.8	95.2	97.3	96.0	94.0	85.6	83.2	79.1		
IL2M	80.9	78.1	73.9	96.7	95.4	93.4	96.5	94.7	92.5	81.8	77.0	71.2		
FR	76.7	76.6	76.4	91.7	91.5	89.7	93.8	93.5	93.5	79.5	79.4	78.7		
DeeSIL	75.5	75.1	74.3	92.7	92.5	92.2	94.0	93.7	93.2	66.9	65.8	64.2		
REMIND	80.9	80.7	78.2	94.7	93.2	93.0	96.3	95.8	94.7	60.7	60.7	60.7		
Joint	92.3			99.2			99.1			91.2				

States				$ \mathcal{K} $ =	= 0.5%					
Dataset	ILS	/RC	VGGF	ACE2	LAND	MARKS	CIFA	R-100	G _{IL}	
\mathcal{T}	20	50	20	50	20	50	20	50	1	
iCaRL	55.9	45.0	88.5	78.2	86.8	82.4	35.5	35.4	-7.36	
FT	69.4	64.3	91.6	89.2	90.9	89.0	64.3	54.8	-5.19	
FT+init	73.6	67.3	94.6	91.4	91.2	88.5	63.6	44.1	-4.43	
FT+NEM	76.5	69.0	94.0	91.1	91.9	89.9	68.8	55.9	-4.28	
FT+BAL	75.9	67.1	92.3	89.5	91.2	88.9	62.9	54.2	-4.70	
FT+th	78.6	71.2	94.3	91.6	92.9	90.7	71.4	57.9	-3.62	
LUCIR	63.9	55.3	93.5	88.3	93.7	90.5	53.5	47.9	-4.13	
BiC	74.6	63.9	92.3	85.3	94.7	90.5	50.5	19.6	-4.03	
ScalL	76.6	70.9	95.0	92.4	92.6	90.4	69.8	51.0	-3.70	
IL2M	70.9	60.6	92.5	88.4	90.8	88.1	61.5	51.0	-4.95	
FR	69.2	58.2	85.8	75.2	89.3	82.8	62.3	33.5	-7.62	
DeeSIL	73.0	58.1	87.2	80.0	90.5	85.1	63.9	44.0	-6.92	
REMIND	73.9	65.0	87.4	80.1	92.8	88.6	52.8	46.4	-6.02	
Joint	92	2.3	90	9.2	9	2	-			

States											
Dataset	ILS	/RC	VGGF	ACE2	LAND	MARKS	CIFA	R-100	G _{IL}		
\mathcal{T}	20	50	20	50	20	50	20	50	1		
iCaRL	55.9	45.0	88.5	78.2	86.8	82.4	35.5	35.4	-7.36		
FT	69.4	64.3	91.6	89.2	90.9	89.0	64.3	54.8	-5.19		
FT+init	73.6	67.3	94.6	91.4	91.2	88.5	63.6	44.1	-4.43		
FT+NEM	76.5	69.0	94.0	91.1	91.9	89.9	68.8	55.9	-4.28		
FT+BAL	75.9	67.1	92.3	89.5	91.2	88.9	62.9	54.2	-4.70		
FT+th	78.6	71.2	94.3	91.6	92.9	90.7	71.4	57.9	-3.62		
LUCIR	63.9	55.3	93.5	88.3	93.7	90.5	53.5	47.9	-4.13		
BiC	74.6	63.9	92.3	85.3	94.7	90.5	50.5	19.6	-4.03		
ScalL	76.6	70.9	95.0	92.4	92.6	90.4	69.8	51.0	-3.70		
IL2M	70.9	60.6	92.5	88.4	90.8	88.1	61.5	51.0	-4.95		
FR	69.2	58.2	85.8	75.2	89.3	82.8	62.3	33.5	-7.62		
DeeSIL	73.0	58.1	87.2	80.0	90.5	85.1	63.9	44.0	-6.92		
REMIND	73.9	65.0	87.4	80.1	92.8	88.6	52.8	46.4	-6.02		
Joint	92	2.3	90	9.2	9	2	-				

States	$ \mathcal{K} =0.5\%$										
Dataset	ILS	/RC	VGGF	ACE2	LAND	MARKS	CIFA	R-100	G _{IL}		
\mathcal{T}	20	50	20	50	20	50	20	50	1		
iCaRL	55.9	45.0	88.5	78.2	86.8	82.4	35.5	35.4	-7.36		
FT	69.4	64.3	91.6	89.2	90.9	89.0	64.3	54.8	-5.19		
FT+init	73.6	67.3	94.6	91.4	91.2	88.5	63.6	44.1	-4.43		
FT+NEM	76.5	69.0	94.0	91.1	91.9	89.9	68.8	55.9	-4.28		
FT+BAL	75.9	67.1	92.3	89.5	91.2	88.9	62.9	54.2	-4.70		
FT+th	78.6	71.2	94.3	91.6	92.9	90.7	71.4	57.9	-3.62		
LUCIR	63.9	55.3	93.5	88.3	93.7	90.5	53.5	47.9	-4.13		
BiC	74.6	63.9	92.3	85.3	94.7	90.5	50.5	19.6	-4.03		
ScalL	76.6	70.9	95.0	92.4	92.6	90.4	69.8	51.0	-3.70		
IL2M	70.9	60.6	92.5	88.4	90.8	88.1	61.5	51.0	-4.95		
FR	69.2	58.2	85.8	75.2	89.3	82.8	62.3	33.5	-7.62		
DeeSIL	73.0	58.1	87.2	80.0	90.5	85.1	63.9	44.0	-6.92		
REMIND	73.9	65.0	87.4	80.1	92.8	88.6	52.8	46.4	-6.02		
Joint	92	2.3	90	9.2	9	2	-				

States	$ \mathcal{K} =0.5\%$										
Dataset	ILS	/RC	VGGF	ACE2	LAND	MARKS	CIFA	R-100	G _{IL}		
\mathcal{T}	20	50	20	50	20	50	20	50	1		
iCaRL	55.9	45.0	88.5	78.2	86.8	82.4	35.5	35.4	-7.36		
FT	69.4	64.3	91.6	89.2	90.9	89.0	64.3	54.8	-5.19		
FT+init	73.6	67.3	94.6	91.4	91.2	88.5	63.6	44.1	-4.43		
FT+NEM	76.5	69.0	94.0	91.1	91.9	89.9	68.8	55.9	-4.28		
FT+BAL	75.9	67.1	92.3	89.5	91.2	88.9	62.9	54.2	-4.70		
FT+th	78.6	71.2	94.3	91.6	92.9	90.7	71.4	57.9	-3.62		
LUCIR	63.9	55.3	93.5	88.3	93.7	90.5	53.5	47.9	-4.13		
BiC	74.6	63.9	92.3	85.3	94.7	90.5	50.5	19.6	-4.03		
ScalL	76.6	70.9	95.0	92.4	92.6	90.4	69.8	51.0	-3.70		
IL2M	70.9	60.6	92.5	88.4	90.8	88.1	61.5	51.0	-4.95		
FR	69.2	58.2	85.8	75.2	89.3	82.8	62.3	33.5	-7.62		
DeeSIL	73.0	58.1	87.2	80.0	90.5	85.1	63.9	44.0	-6.92		
REMIND	73.9	65.0	87.4	80.1	92.8	88.6	52.8	46.4	-6.02		
Joint	92	2.3	99	9.2	9	2	-				

States	$ \mathcal{K} =0.5\%$										
Dataset	ILS	/RC	VGGF	ACE2	LAND	MARKS	CIFA	R-100	G _{IL}		
\mathcal{T}	20	50	20	50	20	50	20	50	1		
iCaRL	55.9	45.0	88.5	78.2	86.8	82.4	35.5	35.4	-7.36		
FT	69.4	64.3	91.6	89.2	90.9	89.0	64.3	54.8	-5.19		
FT+init	73.6	67.3	94.6	91.4	91.2	88.5	63.6	44.1	-4.43		
FT+NEM	76.5	69.0	94.0	91.1	91.9	89.9	68.8	55.9	-4.28		
FT+BAL	75.9	67.1	92.3	89.5	91.2	88.9	62.9	54.2	-4.70		
FT+th	78.6	71.2	94.3	91.6	92.9	90.7	71.4	57.9	-3.62		
LUCIR	63.9	55.3	93.5	88.3	93.7	90.5	53.5	47.9	-4.13		
BiC	74.6	63.9	92.3	85.3	94.7	90.5	50.5	19.6	-4.03		
ScalL	76.6	70.9	95.0	92.4	92.6	90.4	69.8	51.0	-3.70		
IL2M	70.9	60.6	92.5	88.4	90.8	88.1	61.5	51.0	-4.95		
FR	69.2	58.2	85.8	75.2	89.3	82.8	62.3	33.5	-7.62		
DeeSIL	73.0	58.1	87.2	80.0	90.5	85.1	63.9	44.0	-6.92		
REMIND	73.9	65.0	87.4	80.1	92.8	88.6	52.8	46.4	-6.02		
Joint	92	2.3	99	9.2	9	2	-				

Dataset		LSVR	С	VG	GFAC	E2	LAN	DMA	RKS	CI	FAR-1	100	C
States \mathcal{T}	10	20	50	10	20	50	10	20	50	10	20	50	GIL
FT	20.6	13.4	7.1	21.3	13.6	7.1	21.3	13.6	7.1	21.3	13.7	17.4	-54.91
LwF	45.3	37.6	27.1	53.3	42.6	30.8	58.8	49.2	35.2	79.5	65.3	39.0	-34.72
FT+init	61.0	44.9	23.8	90.9	64.4	33.1	68.8	49.4	22.2	55.1	40.8	19.9	-28.99
FT+init+L2	51.6	43.3	34.5	76.8	66.8	55.1	61.4	52.5	39.2	47.5	39.3	22.5	-26.80
FT+init+L2+mc	53.6	42.7	35.6	86.9	71.4	53.6	66.2	52.6	37.9	52.6	43.1	18.2	-25.02
SIW(FT)	64.4	54.3	41.4	88.6	84.1	62.6	79.5	64.5	43.2	59.7	44.3	18.4	-19.38
SIW(LwF)	54.0	45.8	35.1	70.4	59.3	45.2	61.0	53.8	42.2	80.0	68.8	44.6	-28.06
LUCIR	57.6	39.4	21.9	91.4	68.2	32.2	87.8	63.7	32.3	57.5	35.3	21.0	-24.75
FR	74.0	66.9	49.2	88.7	83.0	54.4	93.6	88.1	71.2	73.1	54.8	27.4	-16.30
DeeSIL	73.9	67.5	53.9	92.3	87.5	75.1	93.6	91.1	82.1	65.2	63.4	32.3	-9.22
REMIND	62.2	56.3	44.4	86.8	81.4	69.2	84.5	79.6	69.0	52.7	40.5	25.7	-22.00
Deep-SLDA	70.3	64.5	56.0	90.2	85.4	78.2	89.3	86.4	81.3	68.9	64.4	54.5	-15.40
Joint		92.3			99.2			99.1			91.2		-

三日 のへの

Dataset		LSVR	С	VG	GFAC	E2	LAN	DMA	RKS	CI	FAR-1	100	C
States \mathcal{T}	10	20	50	10	20	50	10	20	50	10	20	50	GIL
FT	20.6	13.4	7.1	21.3	13.6	7.1	21.3	13.6	7.1	21.3	13.7	17.4	-54.91
LwF	45.3	37.6	27.1	53.3	42.6	30.8	58.8	49.2	35.2	79.5	65.3	39.0	-34.72
FT+init	61.0	44.9	23.8	90.9	64.4	33.1	68.8	49.4	22.2	55.1	40.8	19.9	-28.99
FT+init+L2	51.6	43.3	34.5	76.8	66.8	55.1	61.4	52.5	39.2	47.5	39.3	22.5	-26.80
FT+init+L2+mc	53.6	42.7	35.6	86.9	71.4	53.6	66.2	52.6	37.9	52.6	43.1	18.2	-25.02
SIW(FT)	64.4	54.3	41.4	88.6	84.1	62.6	79.5	64.5	43.2	59.7	44.3	18.4	-19.38
SIW(LwF)	54.0	45.8	35.1	70.4	59.3	45.2	61.0	53.8	42.2	80.0	68.8	44.6	-28.06
LUCIR	57.6	39.4	21.9	91.4	68.2	32.2	87.8	63.7	32.3	57.5	35.3	21.0	-24.75
FR	74.0	66.9	49.2	88.7	83.0	54.4	93.6	88.1	71.2	73.1	54.8	27.4	-16.30
DeeSIL	73.9	67.5	53.9	92.3	87.5	75.1	93.6	91.1	82.1	65.2	63.4	32.3	-9.22
REMIND	62.2	56.3	44.4	86.8	81.4	69.2	84.5	79.6	69.0	52.7	40.5	25.7	-22.00
Deep-SLDA	70.3	64.5	56.0	90.2	85.4	78.2	89.3	86.4	81.3	68.9	64.4	54.5	-15.40
Joint		92.3			99.2			99.1			91.2		-

三日 のへの

							_						
Dataset	I	LSVR	С	VG	GFAC	CE2	LAN	IDMA	RKS	CI	FAR-1	100	C
States $\mathcal T$	10	20	50	10	20	50	10	20	50	10	20	50	
FT	20.6	13.4	7.1	21.3	13.6	7.1	21.3	13.6	7.1	21.3	13.7	17.4	-54.91
LwF	45.3	37.6	27.1	53.3	42.6	30.8	58.8	49.2	35.2	79.5	65.3	39.0	-34.72
FT+init	61.0	44.9	23.8	90.9	64.4	33.1	68.8	49.4	22.2	55.1	40.8	19.9	-28.99
FT+init+L2	51.6	43.3	34.5	76.8	66.8	55.1	61.4	52.5	39.2	47.5	39.3	22.5	-26.80
FT+init+L2+mc	53.6	42.7	35.6	86.9	71.4	53.6	66.2	52.6	37.9	52.6	43.1	18.2	-25.02
SIW(FT)	64.4	54.3	41.4	88.6	84.1	62.6	79.5	64.5	43.2	59.7	44.3	18.4	-19.38
SIW(LwF)	54.0	45.8	35.1	70.4	59.3	45.2	61.0	53.8	42.2	80.0	68.8	44.6	-28.06
LUCIR	57.6	39.4	21.9	91.4	68.2	32.2	87.8	63.7	32.3	57.5	35.3	21.0	-24.75
FR	74.0	66.9	49.2	88.7	83.0	54.4	93.6	88.1	71.2	73.1	54.8	27.4	-16.30
DeeSIL	73.9	67.5	53.9	92.3	87.5	75.1	93.6	91.1	82.1	65.2	63.4	32.3	-9.22
REMIND	62.2	56.3	44.4	86.8	81.4	69.2	84.5	79.6	69.0	52.7	40.5	25.7	-22.00
Deep-SLDA	70.3	64.5	56.0	90.2	85.4	78.2	89.3	86.4	81.3	68.9	64.4	54.5	-15.40
Joint		92.3			99.2			99.1			91.2		-

三日 のへの

Dataset		LSVR	С	VG	GFAC	E2	LAN	DMA	RKS	CI	FAR-1	100	C
States $\mathcal T$	10	20	50	10	20	50	10	20	50	10	20	50	
FT	20.6	13.4	7.1	21.3	13.6	7.1	21.3	13.6	7.1	21.3	13.7	17.4	-54.91
LwF	45.3	37.6	27.1	53.3	42.6	30.8	58.8	49.2	35.2	79.5	65.3	39.0	-34.72
FT+init	61.0	44.9	23.8	90.9	64.4	33.1	68.8	49.4	22.2	55.1	40.8	19.9	-28.99
FT+init+L2	51.6	43.3	34.5	76.8	66.8	55.1	61.4	52.5	39.2	47.5	39.3	22.5	-26.80
FT+init+L2+mc	53.6	42.7	35.6	86.9	71.4	53.6	66.2	52.6	37.9	52.6	43.1	18.2	-25.02
SIW(FT)	64.4	54.3	41.4	88.6	84.1	62.6	79.5	64.5	43.2	59.7	44.3	18.4	-19.38
SIW(LwF)	54.0	45.8	35.1	70.4	59.3	45.2	61.0	53.8	42.2	80.0	68.8	44.6	-28.06
LUCIR	57.6	39.4	21.9	91.4	68.2	32.2	87.8	63.7	32.3	57.5	35.3	21.0	-24.75
FR	74.0	66.9	49.2	88.7	83.0	54.4	93.6	88.1	71.2	73.1	54.8	27.4	-16.30
DeeSIL	73.9	67.5	53.9	92.3	87.5	75.1	93.6	91.1	82.1	65.2	63.4	32.3	-9.22
REMIND	62.2	56.3	44.4	86.8	81.4	69.2	84.5	79.6	69.0	52.7	40.5	25.7	-22.00
Deep-SLDA	70.3	64.5	56.0	90.2	85.4	78.2	89.3	86.4	81.3	68.9	64.4	54.5	-15.40
Joint		92.3			99.2			99.1			91.2		-

三日 のへの

Dataset		LSVR	С	VG	GFAC	E2	LAN	DMA	RKS	CI	FAR-1	100	C
States \mathcal{T}	10	20	50	10	20	50	10	20	50	10	20	50	GIL
FT	20.6	13.4	7.1	21.3	13.6	7.1	21.3	13.6	7.1	21.3	13.7	17.4	-54.91
LwF	45.3	37.6	27.1	53.3	42.6	30.8	58.8	49.2	35.2	79.5	65.3	39.0	-34.72
FT+init	61.0	44.9	23.8	90.9	64.4	33.1	68.8	49.4	22.2	55.1	40.8	19.9	-28.99
FT+init+L2	51.6	43.3	34.5	76.8	66.8	55.1	61.4	52.5	39.2	47.5	39.3	22.5	-26.80
FT+init+L2+mc	53.6	42.7	35.6	86.9	71.4	53.6	66.2	52.6	37.9	52.6	43.1	18.2	-25.02
SIW(FT)	64.4	54.3	41.4	88.6	84.1	62.6	79.5	64.5	43.2	59.7	44.3	18.4	-19.38
SIW(LwF)	54.0	45.8	35.1	70.4	59.3	45.2	61.0	53.8	42.2	80.0	68.8	44.6	-28.06
LUCIR	57.6	39.4	21.9	91.4	68.2	32.2	87.8	63.7	32.3	57.5	35.3	21.0	-24.75
FR	74.0	66.9	49.2	88.7	83.0	54.4	93.6	88.1	71.2	73.1	54.8	27.4	-16.30
DeeSIL	73.9	67.5	53.9	92.3	87.5	75.1	93.6	91.1	82.1	65.2	63.4	32.3	-9.22
REMIND	62.2	56.3	44.4	86.8	81.4	69.2	84.5	79.6	69.0	52.7	40.5	25.7	-22.00
Deep-SLDA	70.3	64.5	56.0	90.2	85.4	78.2	89.3	86.4	81.3	68.9	64.4	54.5	-15.40
Joint		92.3			99.2			99.1			91.2		-

三日 のへの

Dataset		LSVR	С	VG	GFAC	E2	LAN	DMA	RKS	CI	FAR-1	100	C
States \mathcal{T}	10	20	50	10	20	50	10	20	50	10	20	50	GIL
FT	20.6	13.4	7.1	21.3	13.6	7.1	21.3	13.6	7.1	21.3	13.7	17.4	-54.91
LwF	45.3	37.6	27.1	53.3	42.6	30.8	58.8	49.2	35.2	79.5	65.3	39.0	-34.72
FT+init	61.0	44.9	23.8	90.9	64.4	33.1	68.8	49.4	22.2	55.1	40.8	19.9	-28.99
FT+init+L2	51.6	43.3	34.5	76.8	66.8	55.1	61.4	52.5	39.2	47.5	39.3	22.5	-26.80
FT+init+L2+mc	53.6	42.7	35.6	86.9	71.4	53.6	66.2	52.6	37.9	52.6	43.1	18.2	-25.02
SIW(FT)	64.4	54.3	41.4	88.6	84.1	62.6	79.5	64.5	43.2	59.7	44.3	18.4	-19.38
SIW(LwF)	54.0	45.8	35.1	70.4	59.3	45.2	61.0	53.8	42.2	80.0	68.8	44.6	-28.06
LUCIR	57.6	39.4	21.9	91.4	68.2	32.2	87.8	63.7	32.3	57.5	35.3	21.0	-24.75
FR	74.0	66.9	49.2	88.7	83.0	54.4	93.6	88.1	71.2	73.1	54.8	27.4	-16.30
DeeSIL	73.9	67.5	53.9	92.3	87.5	75.1	93.6	91.1	82.1	65.2	63.4	32.3	-9.22
REMIND	62.2	56.3	44.4	86.8	81.4	69.2	84.5	79.6	69.0	52.7	40.5	25.7	-22.00
Deep-SLDA	70.3	64.5	56.0	90.2	85.4	78.2	89.3	86.4	81.3	68.9	64.4	54.5	-15.40
Joint		92.3			99.2			99.1			91.2		-

三日 のへで

Method		CIFAR-100			BIRDS-100			FOOD-100	
States	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T} = 5$	$\mathcal{T}=10$	$\mathcal{T}=20$
LwF	53.0	44.0	29.1	53.7	41.8	30.1	42.9	31.8	22.2
w/ BiC	54.0 + 1.0	45.5 + 1.5	30.8 + 1.7	54.6 + 0.9	43.1 + 1.3	31.8 + 1.7	43.4 + 0.5	32.6 + 0.8	23.8 + 1.6
w/ AdBiC	54.3 + 1.3	46.4 + 2.4	32.3 + 3.2	55.0 + 1.3	44.0 + 2.2	32.8 + 2.7	43.5 + 0.6	33.3 + 1.5	24.7 + 2.5
w/ AdBiC + \mathbb{O}	54.9 + 1.9	47.3 + 3.3	32.6 + 3.5	55.8 + 2.1	44.8 + 3.0	33.3 + 3.2	44.0 + 1.1	34.2 + 2.4	25.3 + 3.1
LUCIR	50.1	33.7	19.5	50.8	31.4	17.9	44.2	26.4	15.5
w/ BiC	52.5 + 2.4	37.1 + 3.4	22.4 + 2.9	56.0 + 5.2	37.7 + 6.3	20.6 + 2.7	49.9 + 5.7	31.5 + 5.1	17.2 + 1.7
w/ AdBiC	54.8 + 4.7	42.2 + 8.5	28.4 + 8.9	58.5 + 7.7	45.4 + 14.0	27.3 + 9.4	52.0 + 7.8	37.1 + 10.7	17.7 + 2.2
w/ AdBiC + \mathbb{O}	55.5 + 5.4	43.6 + 9.9	31.2 + 11.7	59.0 + 8.2	46.0 + 14.6	28.8 + 10.9	52.6 + 8.4	38.2 + 11.8	21.0 + 5.5
SIW	29.9	22.7	14.8	30.6	23.2	14.9	29.4	21.6	14.1
w/ BiC	31.4 + 1.5	22.8 + 0.1	14.7 - 0.1	32.8 + 2.2	22.7 - 0.5	12.8 - 2.1	29.1 - 0.3	20.3 - 1.3	12.1 - 2.0
w/ AdBiC	31.7 + 1.8	24.1 + 1.4	15.8 + 1.0	33.0 + 2.4	25.2 + 2.0	15.3 + 0.4	30.9 + 1.5	21.3 - 0.3	14.5 + 0.4
w/ AdBiC + \mathbb{O}	32.8 + 2.9	25.0 + 2.3	16.5 + 1.7	34.4 + 3.8	26.2 + 3.0	16.3 + 1.4	31.5 + 2.1	22.6 + 1.0	15.1 + 1.0
FT+	28.9	22.6	14.5	29.7	23.3	13.5	28.7	21.1	13.3
w/ BiC	30.7 + 1.8	22.5 - 0.1	14.8 + 0.3	32.3 + 2.6	22.5 - 0.8	12.4 - 1.1	28.6 - 0.1	20.6 - 0.5	11.8 - 1.5
w/ AdBiC	31.9 + 3.0	23.6 + 1.0	15.0 + 0.5	34.0 + 4.3	25.0 + 1.7	14.2 + 0.7	30.8 + 2.1	22.2 + 1.1	14.2 + 0.9
w/ AdBiC + \mathbb{O}	32.5 + 3.6	24.6 + 2.0	15.9 + 1.4	34.5 + 4.8	25.7 + 2.4	15.4 + 1.9	31.3 + 2.6	22.7 + 1.6	14.5 + 1.2
Joint		72.7			80.9			71.03	

gains, losses

Method		CIFAR-100			BIRDS-100			FOOD-100	
States	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T} = 5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$
LwF	53.0	44.0	29.1	53.7	41.8	30.1	42.9	31.8	22.2
w/ BiC	54.0 + 1.0	45.5 + 1.5	30.8 + 1.7	54.6 + 0.9	43.1 + 1.3	31.8 + 1.7	43.4 + 0.5	32.6 + 0.8	23.8 + 1.6
w/ AdBiC	54.3 + 1.3	46.4 + 2.4	32.3 + 3.2	55.0 + 1.3	44.0 + 2.2	32.8 + 2.7	43.5 + 0.6	33.3 + 1.5	24.7 + 2.5
w/ AdBiC + \mathbb{O}	54.9 + 1.9	47.3 + 3.3	32.6 + 3.5	55.8 + 2.1	44.8 + 3.0	33.3 + 3.2	44.0 + 1.1	34.2 + 2.4	25.3 + 3.1
LUCIR	50.1	33.7	19.5	50.8	31.4	17.9	44.2	26.4	15.5
w/ BiC	52.5 + 2.4	37.1 + 3.4	22.4 + 2.9	56.0 + 5.2	37.7 + 6.3	20.6 + 2.7	49.9 + 5.7	31.5 + 5.1	17.2 + 1.7
w/ AdBiC	54.8 + 4.7	42.2 + 8.5	28.4 + 8.9	58.5 + 7.7	45.4 + 14.0	27.3 + 9.4	52.0 + 7.8	37.1 + 10.7	17.7 + 2.2
w/ AdBiC + \mathbb{O}	55.5 + 5.4	43.6 + 9.9	31.2 + 11.7	59.0 + 8.2	46.0 + 14.6	28.8 + 10.9	52.6 + 8.4	38.2 + 11.8	21.0 + 5.5
SIW	29.9	22.7	14.8	30.6	23.2	14.9	29.4	21.6	14.1
w/ BiC	31.4 + 1.5	22.8 + 0.1	14.7 - 0.1	32.8 + 2.2	22.7 - 0.5	12.8 - 2.1	29.1 - 0.3	20.3 - 1.3	12.1 - 2.0
w/ AdBiC	31.7 + 1.8	24.1 + 1.4	15.8 + 1.0	33.0 + 2.4	25.2 + 2.0	15.3 + 0.4	30.9 + 1.5	21.3 - 0.3	14.5 + 0.4
w/ AdBiC + \mathbb{O}	32.8 + 2.9	25.0 + 2.3	16.5 + 1.7	34.4 + 3.8	26.2 + 3.0	16.3 + 1.4	31.5 + 2.1	22.6 + 1.0	15.1 + 1.0
FT+	28.9	22.6	14.5	29.7	23.3	13.5	28.7	21.1	13.3
w/ BiC	30.7 + 1.8	22.5 - 0.1	14.8 + 0.3	32.3 + 2.6	22.5 - 0.8	12.4 - 1.1	28.6 - 0.1	20.6 - 0.5	11.8 - 1.5
w/ AdBiC	31.9 + 3.0	23.6 + 1.0	15.0 + 0.5	34.0 + 4.3	25.0 + 1.7	14.2 + 0.7	30.8 + 2.1	22.2 + 1.1	14.2 + 0.9
w/ AdBiC + \mathbb{O}	32.5 + 3.6	24.6 + 2.0	15.9 + 1.4	34.5 + 4.8	25.7 + 2.4	15.4 + 1.9	31.3 + 2.6	22.7 + 1.6	14.5 + 1.2
Joint		72.7			80.9			71.03	

gains, losses

Method		CIFAR-100			BIRDS-100			FOOD-100	
States	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T} = 5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T} = 5$	$\mathcal{T}=10$	$\mathcal{T}=20$
LwF	53.0	44.0	29.1	53.7	41.8	30.1	42.9	31.8	22.2
w/ BiC	54.0 + 1.0	45.5 + 1.5	30.8 + 1.7	54.6 + 0.9	43.1 + 1.3	31.8 + 1.7	43.4 + 0.5	32.6 + 0.8	23.8 + 1.6
w/ AdBiC	54.3 + 1.3	46.4 + 2.4	32.3 + 3.2	55.0 + 1.3	44.0 + 2.2	32.8 + 2.7	43.5 + 0.6	33.3 + 1.5	24.7 + 2.5
w/ AdBiC + \mathbb{O}	54.9 + 1.9	47.3 + 3.3	32.6 + 3.5	55.8 + 2.1	44.8 + 3.0	33.3 + 3.2	44.0 + 1.1	34.2 + 2.4	25.3 + 3.1
LUCIR	50.1	33.7	19.5	50.8	31.4	17.9	44.2	26.4	15.5
w/ BiC	52.5 + 2.4	37.1 + 3.4	22.4 + 2.9	56.0 + 5.2	37.7 + 6.3	20.6 + 2.7	49.9 + 5.7	31.5 + 5.1	17.2 + 1.7
w/ AdBiC	54.8 + 4.7	42.2 + 8.5	28.4 + 8.9	58.5 + 7.7	45.4 + 14.0	27.3 + 9.4	52.0 + 7.8	37.1 + 10.7	17.7 + 2.2
w/ AdBiC + \mathbb{O}	55.5 + 5.4	43.6 + 9.9	31.2 + 11.7	59.0 + 8.2	46.0 + 14.6	28.8 + 10.9	52.6 + 8.4	38.2 + 11.8	21.0 + 5.5
SIW	29.9	22.7	14.8	30.6	23.2	14.9	29.4	21.6	14.1
w/ BiC	31.4 + 1.5	22.8 + 0.1	14.7 - 0.1	32.8 + 2.2	22.7 - 0.5	12.8 - 2.1	29.1 - 0.3	20.3 - 1.3	12.1 - 2.0
w/ AdBiC	31.7 + 1.8	24.1 + 1.4	15.8 + 1.0	33.0 + 2.4	25.2 + 2.0	15.3 + 0.4	30.9 + 1.5	21.3 - 0.3	14.5 + 0.4
w/ AdBiC + \mathbb{O}	32.8 + 2.9	25.0 + 2.3	16.5 + 1.7	34.4 + 3.8	26.2 + 3.0	16.3 + 1.4	31.5 + 2.1	22.6 + 1.0	15.1 + 1.0
FT+	28.9	22.6	14.5	29.7	23.3	13.5	28.7	21.1	13.3
w/ BiC	30.7 + 1.8	22.5 - 0.1	14.8 + 0.3	32.3 + 2.6	22.5 - 0.8	12.4 - 1.1	28.6 - 0.1	20.6 - 0.5	11.8 - 1.5
w/ AdBiC	31.9 + 3.0	23.6 + 1.0	15.0 + 0.5	34.0 + 4.3	25.0 + 1.7	14.2 + 0.7	30.8 + 2.1	22.2 + 1.1	14.2 + 0.9
w/ AdBiC + \mathbb{O}	32.5 + 3.6	24.6 + 2.0	15.9 + 1.4	34.5 + 4.8	25.7 + 2.4	15.4 + 1.9	31.3 + 2.6	22.7 + 1.6	14.5 + 1.2
Joint		72.7			80.9			71.03	

gains, losses

Method		CIFAR-100			BIRDS-100			FOOD-100	
States	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T} = 5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T} = 5$	$\mathcal{T}=10$	$\mathcal{T}=20$
LwF	53.0	44.0	29.1	53.7	41.8	30.1	42.9	31.8	22.2
w/ BiC	54.0 + 1.0	45.5 + 1.5	30.8 + 1.7	54.6 + 0.9	43.1 + 1.3	31.8 + 1.7	43.4 + 0.5	32.6 + 0.8	23.8 + 1.6
w/ AdBiC	54.3 + 1.3	46.4 + 2.4	32.3 + 3.2	55.0 + 1.3	44.0 + 2.2	32.8 + 2.7	43.5 + 0.6	33.3 + 1.5	24.7 + 2.5
w/ AdBiC + \mathbb{O}	54.9 + 1.9	47.3 + 3.3	32.6 + 3.5	55.8 + 2.1	44.8 + 3.0	33.3 + 3.2	44.0 + 1.1	34.2 + 2.4	25.3 + 3.1
LUCIR	50.1	33.7	19.5	50.8	31.4	17.9	44.2	26.4	15.5
w/ BiC	52.5 + 2.4	37.1 + 3.4	22.4 + 2.9	56.0 + 5.2	37.7 + 6.3	20.6 + 2.7	49.9 + 5.7	31.5 + 5.1	17.2 + 1.7
w/ AdBiC	54.8 + 4.7	42.2 + 8.5	28.4 + 8.9	58.5 + 7.7	45.4 + 14.0	27.3 + 9.4	52.0 + 7.8	37.1 + 10.7	17.7 + 2.2
w/ AdBiC + \mathbb{O}	55.5 + 5.4	43.6 + 9.9	31.2 + 11.7	59.0 + 8.2	46.0 + 14.6	28.8 + 10.9	52.6 + 8.4	38.2 + 11.8	21.0 + 5.5
SIW	29.9	22.7	14.8	30.6	23.2	14.9	29.4	21.6	14.1
w/ BiC	31.4 + 1.5	22.8 + 0.1	14.7 - 0.1	32.8 + 2.2	22.7 - 0.5	12.8 - 2.1	29.1 - 0.3	20.3 - 1.3	12.1 - 2.0
w/ AdBiC	31.7 + 1.8	24.1 + 1.4	15.8 + 1.0	33.0 + 2.4	25.2 + 2.0	15.3 + 0.4	30.9 + 1.5	21.3 - 0.3	14.5 + 0.4
w/ AdBiC + \mathbb{O}	32.8 + 2.9	25.0 + 2.3	16.5 + 1.7	34.4 + 3.8	26.2 + 3.0	16.3 + 1.4	31.5 + 2.1	22.6 + 1.0	15.1 + 1.0
FT+	28.9	22.6	14.5	29.7	23.3	13.5	28.7	21.1	13.3
w/ BiC	30.7 + 1.8	22.5 - 0.1	14.8 + 0.3	32.3 + 2.6	22.5 - 0.8	12.4 - 1.1	28.6 - 0.1	20.6 - 0.5	11.8 - 1.5
w/ AdBiC	31.9 + 3.0	23.6 + 1.0	15.0 + 0.5	34.0 + 4.3	25.0 + 1.7	14.2 + 0.7	30.8 + 2.1	22.2 + 1.1	14.2 + 0.9
w/ AdBiC + \mathbb{O}	32.5 + 3.6	24.6 + 2.0	15.9 + 1.4	34.5 + 4.8	25.7 + 2.4	15.4 + 1.9	31.3 + 2.6	22.7 + 1.6	14.5 + 1.2
Joint		72.7			80.9			71.03	

gains, losses

Method	CIFAR-100			BIRDS-100			FOOD-100		
States	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	T = 5	$\mathcal{T}=10$	$\mathcal{T}=20$
LwF	53.0	44.0	29.1	53.7	41.8	30.1	42.9	31.8	22.2
w/ BiC	54.0 + 1.0	45.5 + 1.5	30.8 + 1.7	54.6 + 0.9	43.1 + 1.3	31.8 + 1.7	43.4 + 0.5	32.6 + 0.8	23.8 + 1.6
w/ AdBiC	54.3 + 1.3	46.4 + 2.4	32.3 + 3.2	55.0 + 1.3	44.0 + 2.2	32.8 + 2.7	43.5 + 0.6	33.3 + 1.5	24.7 + 2.5
w/ AdBiC + \mathbb{O}	54.9 + 1.9	47.3 + 3.3	32.6 + 3.5	55.8 + 2.1	44.8 + 3.0	33.3 + 3.2	44.0 + 1.1	34.2 + 2.4	25.3 + 3.1
LUCIR	50.1	33.7	19.5	50.8	31.4	17.9	44.2	26.4	15.5
w/ BiC	52.5 + 2.4	37.1 + 3.4	22.4 + 2.9	56.0 + 5.2	37.7 + 6.3	20.6 + 2.7	49.9 + 5.7	31.5 + 5.1	17.2 + 1.7
w/ AdBiC	54.8 + 4.7	42.2 + 8.5	28.4 + 8.9	58.5 + 7.7	45.4 + 14.0	27.3 + 9.4	52.0 + 7.8	37.1 + 10.7	17.7 + 2.2
w/ AdBiC + \mathbb{O}	55.5 + 5.4	43.6 + 9.9	31.2 + 11.7	59.0 + 8.2	46.0 + 14.6	28.8 + 10.9	52.6 + 8.4	38.2 + 11.8	21.0 + 5.5
SIW	29.9	22.7	14.8	30.6	23.2	14.9	29.4	21.6	14.1
w/ BiC	31.4 + 1.5	22.8 + 0.1	14.7 - 0.1	32.8 + 2.2	22.7 - 0.5	12.8 - 2.1	29.1 - 0.3	20.3 - 1.3	12.1 - 2.0
w/ AdBiC	31.7 + 1.8	24.1 + 1.4	15.8 + 1.0	33.0 + 2.4	25.2 + 2.0	15.3 + 0.4	30.9 + 1.5	21.3 - 0.3	14.5 + 0.4
w/ AdBiC + \mathbb{O}	32.8 + 2.9	25.0 + 2.3	16.5 + 1.7	34.4 + 3.8	26.2 + 3.0	16.3 + 1.4	31.5 + 2.1	22.6 + 1.0	15.1 + 1.0
FT+	28.9	22.6	14.5	29.7	23.3	13.5	28.7	21.1	13.3
w/ BiC	30.7 + 1.8	22.5 - 0.1	14.8 + 0.3	32.3 + 2.6	22.5 - 0.8	12.4 - 1.1	28.6 - 0.1	20.6 - 0.5	11.8 - 1.5
w/ AdBiC	31.9 + 3.0	23.6 + 1.0	15.0 + 0.5	34.0 + 4.3	25.0 + 1.7	14.2 + 0.7	30.8 + 2.1	22.2 + 1.1	14.2 + 0.9
w/ AdBiC + \mathbb{O}	32.5 + 3.6	24.6 + 2.0	15.9 + 1.4	34.5 + 4.8	25.7 + 2.4	15.4 + 1.9	31.3 + 2.6	22.7 + 1.6	14.5 + 1.2
Joint		72.7			80.9			71.03	

gains, losses
Method		CIFAR-100			BIRDS-100			FOOD-100	
States	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T} = 5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T} = 5$	$\mathcal{T}=10$	$\mathcal{T}=20$
LwF	53.0	44.0	29.1	53.7	41.8	30.1	42.9	31.8	22.2
w/ BiC	54.0 + 1.0	45.5 + 1.5	30.8 + 1.7	54.6 + 0.9	43.1 + 1.3	31.8 + 1.7	43.4 + 0.5	32.6 + 0.8	23.8 + 1.6
w/ AdBiC	54.3 + 1.3	46.4 + 2.4	32.3 + 3.2	55.0 + 1.3	44.0 + 2.2	32.8 + 2.7	43.5 + 0.6	33.3 + 1.5	24.7 + 2.5
w/ AdBiC + \mathbb{O}	54.9 + 1.9	47.3 + 3.3	32.6 + 3.5	55.8 + 2.1	44.8 + 3.0	33.3 + 3.2	44.0 + 1.1	34.2 + 2.4	25.3 + 3.1
LUCIR	50.1	33.7	19.5	50.8	31.4	17.9	44.2	26.4	15.5
w/ BiC	52.5 + 2.4	37.1 + 3.4	22.4 + 2.9	56.0 + 5.2	37.7 + 6.3	20.6 + 2.7	49.9 + 5.7	31.5 + 5.1	17.2 + 1.7
w/ AdBiC	54.8 + 4.7	42.2 + 8.5	28.4 + 8.9	58.5 + 7.7	45.4 + 14.0	27.3 + 9.4	52.0 + 7.8	37.1 + 10.7	17.7 + 2.2
w/ AdBiC + \mathbb{O}	55.5 + 5.4	43.6 + 9.9	31.2 + 11.7	59.0 + 8.2	46.0 + 14.6	28.8 + 10.9	52.6 + 8.4	38.2 + 11.8	21.0 + 5.5
SIW	29.9	22.7	14.8	30.6	23.2	14.9	29.4	21.6	14.1
w/ BiC	31.4 + 1.5	22.8 + 0.1	14.7 - 0.1	32.8 + 2.2	22.7 - 0.5	12.8 - 2.1	29.1 - 0.3	20.3 - 1.3	12.1 - 2.0
w/ AdBiC	31.7 + 1.8	24.1 + 1.4	15.8 + 1.0	33.0 + 2.4	25.2 + 2.0	15.3 + 0.4	30.9 + 1.5	21.3 - 0.3	14.5 + 0.4
w/ AdBiC + \mathbb{O}	32.8 + 2.9	25.0 + 2.3	16.5 + 1.7	34.4 + 3.8	26.2 + 3.0	16.3 + 1.4	31.5 + 2.1	22.6 + 1.0	15.1 + 1.0
FT+	28.9	22.6	14.5	29.7	23.3	13.5	28.7	21.1	13.3
w/ BiC	30.7 + 1.8	22.5 - 0.1	14.8 + 0.3	32.3 + 2.6	22.5 - 0.8	12.4 - 1.1	28.6 - 0.1	20.6 - 0.5	11.8 - 1.5
w/ AdBiC	31.9 + 3.0	23.6 + 1.0	15.0 + 0.5	34.0 + 4.3	25.0 + 1.7	14.2 + 0.7	30.8 + 2.1	22.2 + 1.1	14.2 + 0.9
w/ AdBiC + \mathbb{O}	32.5 + 3.6	24.6 + 2.0	15.9 + 1.4	34.5 + 4.8	25.7 + 2.4	15.4 + 1.9	31.3 + 2.6	22.7 + 1.6	14.5 + 1.2
Joint		72.7			80.9			71.03	

gains, losses

Method		CIFAR-100			BIRDS-100			FOOD-100	
States	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T} = 5$	$\mathcal{T}=10$	$\mathcal{T}=20$
LwF	53.0	44.0	29.1	53.7	41.8	30.1	42.9	31.8	22.2
w/ BiC	54.0 + 1.0	45.5 + 1.5	30.8 + 1.7	54.6 + 0.9	43.1 + 1.3	31.8 + 1.7	43.4 + 0.5	32.6 + 0.8	23.8 + 1.6
w/ AdBiC	54.3 + 1.3	46.4 + 2.4	32.3 + 3.2	55.0 + 1.3	44.0 + 2.2	32.8 + 2.7	43.5 + 0.6	33.3 + 1.5	24.7 + 2.5
w/ AdBiC + \mathbb{O}	54.9 + 1.9	47.3 + 3.3	32.6 + 3.5	55.8 + 2.1	44.8 + 3.0	33.3 + 3.2	44.0 + 1.1	34.2 + 2.4	25.3 + 3.1
LUCIR	50.1	33.7	19.5	50.8	31.4	17.9	44.2	26.4	15.5
w/ BiC	52.5 + 2.4	37.1 + 3.4	22.4 + 2.9	56.0 + 5.2	37.7 + 6.3	20.6 + 2.7	49.9 + 5.7	31.5 + 5.1	17.2 + 1.7
w/ AdBiC	54.8 + 4.7	42.2 + 8.5	28.4 + 8.9	58.5 + 7.7	45.4 + 14.0	27.3 + 9.4	52.0 + 7.8	37.1 + 10.7	17.7 + 2.2
w/ AdBiC + \mathbb{O}	55.5 + 5.4	43.6 + 9.9	31.2 + 11.7	59.0 + 8.2	46.0 + 14.6	28.8 + 10.9	52.6 + 8.4	38.2 + 11.8	21.0 + 5.5
SIW	29.9	22.7	14.8	30.6	23.2	14.9	29.4	21.6	14.1
w/ BiC	31.4 + 1.5	22.8 + 0.1	14.7 - 0.1	32.8 + 2.2	22.7 - 0.5	12.8 - 2.1	29.1 - 0.3	20.3 - 1.3	12.1 - 2.0
w/ AdBiC	31.7 + 1.8	24.1 + 1.4	15.8 + 1.0	33.0 + 2.4	25.2 + 2.0	15.3 + 0.4	30.9 + 1.5	21.3 - 0.3	14.5 + 0.4
w/ AdBiC + \mathbb{O}	32.8 + 2.9	25.0 + 2.3	16.5 + 1.7	34.4 + 3.8	26.2 + 3.0	16.3 + 1.4	31.5 + 2.1	22.6 + 1.0	15.1 + 1.0
FT+	28.9	22.6	14.5	29.7	23.3	13.5	28.7	21.1	13.3
w/ BiC	30.7 + 1.8	22.5 - 0.1	14.8 + 0.3	32.3 + 2.6	22.5 - 0.8	12.4 - 1.1	28.6 - 0.1	20.6 - 0.5	11.8 - 1.5
w/ AdBiC	31.9 + 3.0	23.6 + 1.0	15.0 + 0.5	34.0 + 4.3	25.0 + 1.7	14.2 + 0.7	30.8 + 2.1	22.2 + 1.1	14.2 + 0.9
w/ AdBiC + \mathbb{O}	32.5 + 3.6	24.6 + 2.0	15.9 + 1.4	34.5 + 4.8	25.7 + 2.4	15.4 + 1.9	31.3 + 2.6	22.7 + 1.6	14.5 + 1.2
Joint		72.7			80.9			71.03	

gains, losses

Method		CIFAR-100			BIRDS-100			FOOD-100	
States	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	T = 5	$\mathcal{T}=10$	$\mathcal{T}=20$
LwF	53.0	44.0	29.1	53.7	41.8	30.1	42.9	31.8	22.2
w/ BiC	54.0 + 1.0	45.5 + 1.5	30.8 + 1.7	54.6 + 0.9	43.1 + 1.3	31.8 + 1.7	43.4 + 0.5	32.6 + 0.8	23.8 + 1.6
w/ AdBiC	54.3 + 1.3	46.4 + 2.4	32.3 + 3.2	55.0 + 1.3	44.0 + 2.2	32.8 + 2.7	43.5 + 0.6	33.3 + 1.5	24.7 + 2.5
w/ AdBiC + \mathbb{O}	54.9 + 1.9	47.3 + 3.3	32.6 + 3.5	55.8 + 2.1	44.8 + 3.0	33.3 + 3.2	44.0 + 1.1	34.2 + 2.4	25.3 + 3.1
LUCIR	50.1	33.7	19.5	50.8	31.4	17.9	44.2	26.4	15.5
w/ BiC	52.5 + 2.4	37.1 + 3.4	22.4 + 2.9	56.0 + 5.2	37.7 + 6.3	20.6 + 2.7	49.9 + 5.7	31.5 + 5.1	17.2 + 1.7
w/ AdBiC	54.8 + 4.7	42.2 + 8.5	28.4 + 8.9	58.5 + 7.7	45.4 + 14.0	27.3 + 9.4	52.0 + 7.8	37.1 + 10.7	17.7 + 2.2
w/ AdBiC + \mathbb{O}	55.5 + 5.4	43.6 + 9.9	31.2 + 11.7	59.0 + 8.2	46.0 + 14.6	28.8 + 10.9	52.6 + 8.4	38.2 + 11.8	21.0 + 5.5
SIW	29.9	22.7	14.8	30.6	23.2	14.9	29.4	21.6	14.1
w/ BiC	31.4 + 1.5	22.8 + 0.1	14.7 - 0.1	32.8 + 2.2	22.7 - 0.5	12.8 - 2.1	29.1 - 0.3	20.3 - 1.3	12.1 - 2.0
w/ AdBiC	31.7 + 1.8	24.1 + 1.4	15.8 + 1.0	33.0 + 2.4	25.2 + 2.0	15.3 + 0.4	30.9 + 1.5	21.3 - 0.3	14.5 + 0.4
w/ AdBiC + \mathbb{O}	32.8 + 2.9	25.0 + 2.3	16.5 + 1.7	34.4 + 3.8	26.2 + 3.0	16.3 + 1.4	31.5 + 2.1	22.6 + 1.0	15.1 + 1.0
FT+	28.9	22.6	14.5	29.7	23.3	13.5	28.7	21.1	13.3
w/ BiC	30.7 + 1.8	22.5 - 0.1	14.8 + 0.3	32.3 + 2.6	22.5 - 0.8	12.4 - 1.1	28.6 - 0.1	20.6 - 0.5	11.8 - 1.5
w/ AdBiC	31.9 + 3.0	23.6 + 1.0	15.0 + 0.5	34.0 + 4.3	25.0 + 1.7	14.2 + 0.7	30.8 + 2.1	22.2 + 1.1	14.2 + 0.9
w/ AdBiC + \mathbb{O}	32.5 + 3.6	24.6 + 2.0	15.9 + 1.4	34.5 + 4.8	25.7 + 2.4	15.4 + 1.9	31.3 + 2.6	22.7 + 1.6	14.5 + 1.2
Joint		72.7			80.9			71.03	

gains, losses

Method		CIFAR-100			BIRDS-100		FOOD-100			
States	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	T = 5	$\mathcal{T}=10$	$\mathcal{T}=20$	
LwF	53.0	44.0	29.1	53.7	41.8	30.1	42.9	31.8	22.2	
w/ BiC	54.0 + 1.0	45.5 + 1.5	30.8 + 1.7	54.6 + 0.9	43.1 + 1.3	31.8 + 1.7	43.4 + 0.5	32.6 + 0.8	23.8 + 1.6	
w/ AdBiC	54.3 + 1.3	46.4 + 2.4	32.3 + 3.2	55.0 + 1.3	44.0 + 2.2	32.8 + 2.7	43.5 + 0.6	33.3 + 1.5	24.7 + 2.5	
w/ AdBiC + \mathbb{O}	54.9 + 1 .9	47.3 + 3.3	32.6 + 3.5	55.8 + 2.1	44.8 + 3.0	33.3 + 3.2	44.0 + 1.1	34.2 + 2.4	25.3 + 3.1	
LUCIR	50.1	33.7	19.5	50.8	31.4	17.9	44.2	26.4	15.5	
w/ BiC	52.5 + 2.4	37.1 + 3.4	22.4 + 2.9	56.0 + 5.2	37.7 + 6.3	20.6 + 2.7	49.9 + 5.7	31.5 + 5.1	17.2 + 1.7	
w/ AdBiC	54.8 + 4.7	42.2 + 8.5	28.4 + 8.9	58.5 + 7.7	45.4 + 14.0	27.3 + 9.4	52.0 + 7.8	37.1 + 10.7	17.7 + 2.2	
w / AdBiC + \mathbb{O}	55.5 + 5.4	43.6 + 9.9	31.2 + 11.7	59.0 + 8.2	46.0 + 14.6	28.8 + 10.9	52.6 + 8.4	38.2 + 11.8	21.0 + 5.5	
SIW	29.9	22.7	14.8	30.6	23.2	14.9	29.4	21.6	14.1	
w/ BiC	31.4 + 1.5	22.8 + 0.1	14.7 - 0.1	32.8 + 2.2	22.7 - 0.5	12.8 - 2.1	29.1 - 0.3	20.3 - 1.3	12.1 - 2.0	
w/ AdBiC	31.7 + 1.8	24.1 + 1.4	15.8 + 1.0	33.0 + 2.4	25.2 + 2.0	15.3 + 0.4	30.9 + 1.5	21.3 - 0.3	14.5 + 0.4	
w/ AdBiC + \mathbb{O}	32.8 + 2.9	25.0 + 2.3	16.5 + 1.7	34.4 + 3.8	26.2 + 3.0	16.3 + 1.4	31.5 + 2.1	22.6 + 1.0	15.1 + 1.0	
FT+	28.9	22.6	14.5	29.7	23.3	13.5	28.7	21.1	13.3	
w/ BiC	30.7 + 1.8	22.5 - 0.1	14.8 + 0.3	32.3 + 2.6	22.5 - 0.8	12.4 - 1.1	28.6 - 0.1	20.6 - 0.5	11.8 - 1.5	
w/ AdBiC	31.9 + 3.0	23.6 + 1.0	15.0 + 0.5	34.0 + 4.3	25.0 + 1.7	14.2 + 0.7	30.8 + 2.1	22.2 + 1.1	14.2 + 0.9	
w/ AdBiC + \mathbb{O}	32.5 + 3.6	24.6 + 2.0	15.9 + 1.4	34.5 + 4.8	25.7 + 2.4	15.4 + 1.9	31.3 + 2.6	22.7 + 1.6	14.5 + 1.2	
Joint		72.7			80.9			71.03		

gains, losses

Method		CIFAR-100			BIRDS-100			FOOD-100	
States	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T}=5$	$\mathcal{T}=10$	$\mathcal{T}=20$	$\mathcal{T} = 5$	$\mathcal{T}=10$	$\mathcal{T}=20$
LwF	53.0	44.0	29.1	53.7	41.8	30.1	42.9	31.8	22.2
w/ BiC	54.0 + 1.0	45.5 + 1.5	30.8 + 1.7	54.6 + 0.9	43.1 + 1.3	31.8 + 1.7	43.4 + 0.5	32.6 + 0.8	23.8 + 1.6
w/ AdBiC	54.3 + 1.3	46.4 + 2.4	32.3 + 3.2	55.0 + 1.3	44.0 + 2.2	32.8 + 2.7	43.5 + 0.6	33.3 + 1.5	24.7 + 2.5
w/ AdBiC + \mathbb{O}	54.9 + 1.9	47.3 + 3.3	32.6 + 3.5	55.8 + 2.1	44.8 + 3.0	33.3 + 3.2	44.0 + 1.1	34.2 + 2.4	25.3 + 3.1
LUCIR	50.1	33.7	19.5	50.8	31.4	17.9	44.2	26.4	15.5
w/ BiC	52.5 + 2.4	37.1 + 3.4	22.4 + 2.9	56.0 + 5.2	37.7 + 6.3	20.6 + 2.7	49.9 + 5.7	31.5 + 5.1	17.2 + 1.7
w/ AdBiC	54.8 + 4.7	42.2 + 8.5	28.4 + 8.9	58.5 + 7.7	45.4 + 14.0	27.3 + 9.4	52.0 + 7.8	37.1 + 10.7	17.7 + 2.2
w/ AdBiC + \mathbb{O}	55.5 + 5.4	43.6 + 9.9	31.2 + 11.7	59.0 + 8.2	46.0 + 14.6	28.8 + 10.9	52.6 + 8.4	38.2 + 11.8	21.0 + 5.5
SIW	29.9	22.7	14.8	30.6	23.2	14.9	29.4	21.6	14.1
w/ BiC	31.4 + 1.5	22.8 + 0.1	14.7 - 0.1	32.8 + 2.2	22.7 - 0.5	12.8 - 2.1	29.1 - 0.3	20.3 - 1.3	12.1 - 2.0
w/ AdBiC	31.7 + 1.8	24.1 + 1.4	15.8 + 1.0	33.0 + 2.4	25.2 + 2.0	15.3 + 0.4	30.9 + 1.5	21.3 - 0.3	14.5 + 0.4
w/ AdBiC + \mathbb{O}	32.8 + 2.9	25.0 + 2.3	16.5 + 1.7	34.4 + 3.8	26.2 + 3.0	16.3 + 1.4	31.5 + 2.1	22.6 + 1.0	15.1 + 1.0
FT+	28.9	22.6	14.5	29.7	23.3	13.5	28.7	21.1	13.3
w/ BiC	30.7 + 1.8	22.5 - 0.1	14.8 + 0.3	32.3 + 2.6	22.5 - 0.8	12.4 - 1.1	28.6 - 0.1	20.6 - 0.5	11.8 - 1.5
w/ AdBiC	31.9 + 3.0	23.6 + 1.0	15.0 + 0.5	34.0 + 4.3	25.0 + 1.7	14.2 + 0.7	30.8 + 2.1	22.2 + 1.1	14.2 + 0.9
w/ AdBiC + \mathbb{O}	32.5 + 3.6	24.6 + 2.0	15.9 + 1.4	34.5 + 4.8	25.7 + 2.4	15.4 + 1.9	31.3 + 2.6	22.7 + 1.6	14.5 + 1.2
Joint		72.7			80.9			71.03	

gains, losses

Results and discussion

Continual Learning for Object Detection on the Edge

• Results without Continual Learning

Eden BELOUADAH

Results and discussion

Continual Learning for Object Detection on the Edge

• Results with Continual Learning

	dl	d2	d3	d4	d5	nı	n2	n3	n4	n5	video	base
d1 -	0.755	0.621	0.381	0.182	0.19	0.286	0.32	0.451	0.475	0.428	0.409	0.137
d2 -	0.611	0.713	0.519	0.444	0.39	0.517	0.417	0.476	0.514	0.432	0.503	0.234
d3 -	0.201	0.409	0.783	0.465	0.458	0.48	0.457	0.175	0.157	0.379	0.396	0.268
d4 -	0.451	0.468	0.306	0.623	0.536	0.554	0.524	0.335	0.369	0.456	0.462	0.006
d5 -	0.253	0.364	0.49	0.504	0.885	0.841	0.794	0.419	0.362	0.395	0.531	0.285
videos	0.303	0.384	0.473	0.556	0.741	0.887	0.866	0.453	0.342	0.497	0.55	0.28
n2 -	0.682	0.737	0.706	0.717	0.798	0.89	0.99	0.638	0.439	0.774	0.737	0.51
n3 -	0.679	0.65	0.485	0.372	0.255	0.517	0.498	0.968	0.97	0.859	0.625	0.313
n4 -	0.667	0.662	0.405	0.381	0.298	0.509	0.496	0.972	0.971	0.869	0.623	0.305
n5 -	0.624	0.665	0.464	0.351	0.308	0.567	0.636	0.745	0.658	0.968	0.599	0.507
avg _ model	0.523	0.567	0.501	0.459	0.486	0.605	0.6	0.563	0.526	0.606	-1.0	0.285

●> 문 = · · ○ < · · ·</p>

Eden BELOUADAH

Conclusions and future work

・ロト ・回ト ・ヨト ・ヨト

11 90C

Conclusions

- In fine tuning, the classification layer is the most affected by catastrophic forgetting
- Fine-tuning-based methods are the best option when a memory is allowed
- Fixed representations are an appropriate choice without memory
- Usefulness of distillation is reduced at large scale
- We reduce the model's footprint by half compared to distillation-based methods
- In object detection, transfer learning is useful to tackle both overfitting and forgetting

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

- Focus more on continual learning without memory
- Find or create challenging datasets for continual learning
- Propose a class-incremental method for object detection

E SQA

(日) (四) (日) (日) (日)

Thank you!

Eden BELOUADAH

三日 のへで

・ロト ・回ト ・ヨト ・ヨト

Appendix

Eden BELOUADAH

April 20th, 2023 1 / 13

Fixed-Representation-based methods:

DeeSIL (Belouadah and Popescu, 2018), Deep-SLDA (Hayes and Kanan, 2019), REMIND (Hayes et al., 2019), FearNet Kemker and Kanan, 2018.

Fine-Tuning-based methods:

DGM (Ostapenko et al., 2019), *DGR* (Shin et al., 2017), *GMNF* (Cong et al., 2020), *LwF* (Li and Hoiem, 2016), *EWC* (Kirkpatrick et al., 2016), *MAS* (Aljundi et al., 2018), *BiC* (Wu et al., 2019), *MDF* (Zhao et al., 2020), *LUCIR* (Hou et al., 2019), *iCaRL* (Rebuffi et al., 2017), *E2EIL* (Castro et al., 2018).

Parameter-isolation-based methods:

PackNet (Mallya and Lazebnik, 2018), *PiggyBack* (Mallya et al., 2018), *TFM* (Masana et al., 2020), *Expert – Gate* (Aljundi et al., 2017), *PNN* (Rusu et al., 2016), *DAN* (Rosenfeld and Tsotsos, 2017).

Bibliography

- [1] Rahaf Aljundi et al. "Expert Gate: Lifelong Learning with a Network of Experts". In: *Conference on Computer Vision and Pattern Recognition*. CVPR. 2017.
- Rahaf Aljundi et al. "Memory Aware Synapses: Learning What (not) to Forget". In: Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. Ed. by Vittorio Ferrari et al. Vol. 11207. Lecture Notes in Computer Science. Springer, 2018, pp. 144–161.
- [3] Eden Belouadah and Adrian Popescu. "DeeSIL: Deep-Shallow Incremental Learning". In: *TaskCV Workshop @ ECCV 2018*. (2018).
- [4] Eden Belouadah and Adrian Popescu. "II2m: Class incremental learning with dual memory". In: *Proceedings of the IEEE International Conference on Computer Vision*. 2019, pp. 583–592.
 [5] Eden Belouadah and Adrian Popescu. "ScalL: Classifier Weights Scaling for Class Incremental Learning". In: *The IEEE Winter Conference on Applications of Computer Vision (WACV)*. Mar. 2020.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シスペ

- [6] Eden Belouadah et al. "Initial Classifier Weights Replay for Memoryless Class Incremental Learning". In: *British Machine Vision Conference (BMVC)*. 2020.
- [7] Lukas Bossard et al. "Food-101 Mining Discriminative Components with Random Forests". In: European Conference on Computer Vision. 2014.
- [8] Mateusz Buda et al. "A systematic study of the class imbalance problem in convolutional neural networks". In: *Neural Networks* 106 (2018), pp. 249–259.
- [9] Qiong Cao et al. "VGGFace2: A Dataset for Recognising Faces across Pose and Age". In: 13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018, Xian, China, May 15-19, 2018. 2018, pp. 67–74.
- [10] Francisco M. Castro et al. "End-to-End Incremental Learning". In: *Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XII.* 2018, pp. 241–257.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- [11] Yulai Cong et al. "GAN Memory with No Forgetting". In: CoRR abs/2006.07543 (2020).
- [12] Jia Deng et al. "ImageNet: A large-scale hierarchical image database". In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA. 2009, pp. 248–255.
- [13] Tyler L. Hayes and Christopher Kanan. "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis". In: CoRR abs/1909.01520 (2019).
- [14] Tyler L. Hayes et al. "REMIND Your Neural Network to Prevent Catastrophic Forgetting". In: *CoRR* abs/1910.02509 (2019).
- [15] Saihui Hou et al. "Learning a Unified Classifier Incrementally via Rebalancing". In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. 2019, pp. 831–839.

- [16] Ronald Kemker and Christopher Kanan. "FearNet: Brain-Inspired Model for Incremental Learning". In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. 2018.
- [17] James Kirkpatrick et al. "Overcoming catastrophic forgetting in neural networks". In: CoRR abs/1612.00796 (2016).
- [18] Alex Krizhevsky. *Learning multiple layers of features from tiny images.* Tech. rep. University of Toronto, 2009.
- [19] Matthias De Lange et al. "Continual learning: A comparative study on how to defy forgetting in classification tasks". In: *CoRR* abs/1909.08383 (2019).
- [20] Zhizhong Li and Derek Hoiem. "Learning Without Forgetting". In: European Conference on Computer Vision. ECCV. 2016.
- [21] Arun Mallya and Svetlana Lazebnik. "PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning". In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. 2018, pp. 7765–7773.

- [22] Arun Mallya et al. "Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights". In: ECCV (4).
 Vol. 11208. Lecture Notes in Computer Science. Springer, 2018, pp. 72–88.
- [23] Marc Masana et al. Class-incremental learning: survey and performance evaluation on image classification. 2021. arXiv: 2010.15277 [cs.LG].
- [24] Marc Masana et al. "Ternary Feature Masks: continual learning without any forgetting". In: CoRR abs/2001.08714 (2020). URL: https://arxiv.org/abs/2001.08714.
- [25] Michael Mccloskey and Neil J. Cohen. "Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem". In: *The Psychology of Learning and Motivation* 24 (1989), pp. 104–169.
- [26] Hyeonwoo Noh et al. "Large-Scale Image Retrieval with Attentive Deep Local Features". In: *ICCV*. IEEE Computer Society, 2017, pp. 3476–3485.

- [27] Oleksiy Ostapenko et al. "Learning to Remember: A Synaptic Plasticity Driven Framework for Continual Learning". In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2019, pp. 11321–11329.
- [28] Sylvestre-Alvise Rebuffi et al. "iCaRL: Incremental Classifier and Representation Learning". In: *Conference on Computer Vision and Pattern Recognition*. CVPR. 2017.
- [29] Amir Rosenfeld and John K. Tsotsos. "Incremental Learning Through Deep Adaptation". In: CoRR abs/1705.04228 (2017).
- [30] Olga Russakovsky et al. "ImageNet Large Scale Visual Recognition Challenge". In: *International Journal of Computer Vision* 115.3 (2015), pp. 211–252.
- [31] Andrei A. Rusu et al. "Progressive Neural Networks". In: CoRR abs/1606.04671 (2016).
- [32] Hanul Shin et al. "Continual Learning with Deep Generative Replay". In: *NIPS*. 2017, pp. 2994–3003.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- [33] Habib Slim et al. "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory". In: *The IEEE Winter Conference on Applications of Computer Vision (WACV)*. 2022.
- [34] Yue Wu et al. "Large Scale Incremental Learning". In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. 2019, pp. 374–382.
 [35] Bowen Zhao et al. "Maintaining Discrimination and Fairness in Class Incremental Learning". In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 2020, pp. 13205–13214.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

Backup Slides

Eden BELOUADAH

三日 りへぐ

・ロト ・回ト ・ヨト ・ヨト

Mean Features Similarity

Mean feature similarities between incremental states for test images of the first state.

EL OQO

イロト イヨト イヨト イヨ

Additional Storage of our methods

Mathod	Additional Storage (AS)	AS for $N_{\mathcal{T}}=1000$							
Wiethou	in float	T = 5	$\mathcal{T} = 10$	$\mathcal{T}=20$	$\mathcal{T}=50$	$\mathcal{T} = 100$			
DeeSIL	0	0	0	0	0	0			
IL2M	$\mathcal{T} + N_{\mathcal{T}}$	4.02 KB	4.04 KB	4.08 KB	4.2 KB	4.4 KB			
ScalL	$N_T imes D$	2.05 MB	2.05 MB	2.05 MB	2.05 MB	2.05 MB			
SIW	$\mathcal{T} + N_{\mathcal{T}} imes D$	2.05 MB	2.05 MB	2.05 MB	2.05 MB	2.05 MB			
TransIL (AdBiC)	$R imes (\mathcal{T}+2) imes (\mathcal{T}-1)$	1.12 KB	4.32 KB	16.72 KB	101.92 KB	403.92 KB			
TransIL (BiC)	$2 imes R imes (\mathcal{T}-1)$	320 B	720 B	1.52 KB	3.92 KB	7.92 KB			

Additional Storage (AS) of our proposed IL approaches

三日 のへの

イロン イ団 とく ヨン イヨン

Backup Slides

Results with other deep architectures

Number of parameters (in millions)

Results with other architectures (Masana et al., 2021)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆□ ■ ● ● ●