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Introduction
Continual Learning

Continual Learning
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Introduction
Applications of Continual Learning

Application examples of continual learning

[all snippets used to make figures in this presentation are taken from the web]
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Introduction
Challenges of Continual Learning

Catastrophic forgetting
▶ Tendency of neural networks to underfit past data when new one is

ingested
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Introduction
Class-Incremental Learning

Three Scenarios of Continual Learning
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Introduction
Two scenarios of Class-Incremental Learning

▶ Incremental Learning with memory

▶ Incremental Learning without memory
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Introduction
Usefulness of a bounded memory

Memory reduces prediction bias towards new classes

Mean prediction scores of past and new classes with vanilla fine tuning
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1. State of the art
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State of the art
Three main categories

[Schema inspired by Lange et al., 2019]

[References are in appendix slides]
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State of the art
Challenges

* [Inspired by Rebuffi et al., 2017]
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State of the art
Pros and Cons
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State of the art
LwF: Learning without Forgetting

LwF: Learning without Forgetting (Li and Hoiem, 2016)

• Fine Tuning with distillation loss

Ld
t (x) =

∑
(x,y) ∈ Dt

Nt−1∑
j=1

−σ̂j
t−1(x) log [σ̂

j
t(x)] (1)

where σ̂ is the softened softmax

▶ (+) No memory of the past is needed
▶ (−) The gap with a Joint training is large
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State of the art
iCaRL: Incremental Classifier and Representation Learning

iCaRL: Incremental Classifier and Representation Learning
(Rebuffi et al., 2017)

• LwF with memory

• Herding to select exemplars

e ← argmin
x∈X

∥µ− 1

k
[f (x) +

k−1∑
j=1

f (ej)]∥ (2)

• Nearest Exemplars Mean (NEM)

y∗ = argmin
y∈[1,Nt ]

∥f (x)− µy∥ (3)

▶ (+) Combination of powerful components
▶ (−) Unfair comparison with baselines
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State of the art
LUCIR: Learning a Unified Classifier Incrementally via Rebalancing

LUCIR: Learning a Unified Classifier Incrementally via
Rebalancing (Hou et al., 2019)

• Cosine normalization

• Less-forget constraint

• Inter-class separation

▶ (+) Powerful objective
▶ (−) Important execution time
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State of the art
BiC: Bias Correction

BiC: Bias Correction (Wu et al., 2019)

• Distillation loss

• Bias-removal layer

BiC (ok
t ) =

{
ok

t if k ∈ [1, t − 1]
αtok

t + βt · 1 if k = t
(4)

▶ (+) Simple, fast, and accurate
▶ (−) Uses a validation set (memory required)
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2. Class-incremental learning with memory
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Class-Incremental Learning with memory
DeeSIL: Deep-Shallow Incremental Learning (W-ECCV 2018)

DeeSIL: Deep-Shallow Incremental Learning
(Belouadah and Popescu, 2018, W-ECCV)

• Fixed Representation based

• Inspired by transfer learning

• Works with and without memory

Overview of DeeSIL
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Class-Incremental Learning with memory
IL2M: Incremental Learning with Dual memory (ICCV 2019)

IL2M: Incremental Learning with Dual memory
(Belouadah and Popescu, 2019, ICCV)

• Fine Tuning based

• Leverages past class statistics

Overview of IL2M
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Class-Incremental Learning with memory
IL2M: Incremental Learning with Dual memory (ICCV 2019)

• Past class score rectification

For all past classes (j = 1, . . . ,Nt−1):

o j
t

′
= IL2M(o j

t) =

o j
t ×

µj
i

µj
t

× µ(Mt)
µ(Mi )

, if pred = new

o j
t , otherwise

(5)

with:

▶ i - the initial state in which the j th class was learned

▶ t - the current incremental state

▶ o j
t - the raw prediction the j th class in the current state t

▶ µj
i and µj

t - the mean classification scores of the j th class in states i
and t

▶ µ(Mt) and µ(Mi ) - the model mean score in states t and i
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Class-Incremental Learning with memory
IL2M: Incremental Learning with Dual memory (ICCV 2019)

• Effect of IL2M

Before After
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Class-Incremental Learning with memory
ScaIL: Classifier weights Scaling for Class IL (WACV 2020)

ScaIL: Classifier weights Scaling for Class IL
(Belouadah and Popescu, 2020, WACV)

• Fine Tuning based

• Forgetting happens mainly in the final layer

• Features are usable across incremental states

Mean prediction scores and weights magnitudes
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Class-Incremental Learning with memory
ScaIL: Classifier weights Scaling for Class IL (WACV 2020)

• Past class weights replay

Overview of ScaIL

Eden BELOUADAH April 20th, 2023 23 / 60



Class-Incremental Learning with memory
ScaIL: Classifier weights Scaling for Class IL (WACV 2020)

• Sort class weights

Ŵ j
t = sort(|w1

j |, |w2
j |, ..., |wd

j |, ...., |wD
j |) ; j ∈ [Nt−1,Nt ] , d ∈ [1,D] (6)

Ŵ j
t is the sorted version of the initial weights vector of new class j .

• Compute state mean vector

µd
t =

1

Pt
×

Nt∑
j=Nt−1

ŵd
j d ∈ [1,D] (7)

where µt (of dimension D) is the mean vector of the ranked new classes’
weights in the state St , and d is a dimension in the feature vector.
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Class-Incremental Learning with memory
ScaIL: Classifier weights Scaling for Class IL (WACV 2020)

• Normalize past class weights

wd
j

′
=

µ
R(d)
t

µ
R(d)
i

× wd
j (8)

wd
j
′
is the scaled version of wd

j , the d th dimension of the initial classifier

W j
i of the j th past class.

• Effect of ScaIL

Before After
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2. Class-incremental learning without memory
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Class-Incremental Learning without memory
SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

SIW: Standardization of Initial Weights for Class
Incremental Learning (Belouadah et al., 2020, BMVC)

• Fine Tuning based

• Bias in the mean weights magnitudes

Mean weights magnitudes without memory
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Class-Incremental Learning without memory
SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

• Past class weights replay

Overview of SIW
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Class-Incremental Learning without memory
SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

• Classifier weights distribution

Weights distribution of classifier weights
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Class-Incremental Learning without memory
SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

• Standardization of Initial Weights

w ′
d =

wd − µ(W )

σ(W )
(9)

with:

wd is the d th dimension of an initial classifier W , µ(W ) and σ(W ) are
the mean and standard deviation of W .

• State-level calibration

o j
t(x) = (ft(x) ·W j

t
′
+ bij )×

µ(Mt)

µ(Mi )
(10)

µ(Mt) and µ(Mi ) are means of top-1 predictions of models learned in
the tth and i th states
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Class-Incremental Learning without memory
SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

• Effect of SIW on weights magnitudes

Before After
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Class-Incremental Learning without memory
TransIL: Dataset Knowledge Transfer for Class IL (WACV 2022)

TransIL: Dataset Knowledge Transfer for Class IL
(Slim et al., 2022, WACV)

• Fine Tuning based

• Bias in the mean classification scores after LwF and LUCIR

LwF (Li and Hoiem, 2016) LUCIR (Hou et al., 2019)

Mean prediction scores and standard deviation
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Class-Incremental Learning without memory
TransIL: Dataset Knowledge Transfer for Class IL (WACV 2022)

Enable the use of Bias Correction layers in a memoryless scenario

• BiC : Bias Correction (Wu et al., 2019)

BiC (ok
t ) =

{
ok

t if k ∈ [1, t − 1]
αtok

t + βt · 1 if k = t
(11)
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Class-Incremental Learning without memory
TransIL: Dataset Knowledge Transfer for Class IL (WACV 2022)

• adBiC : Adaptive Bias Correction (proposed)

adBiC (ok
t ) = αk

t o
k
t + βk

t · 1 ; k ∈ [1, t] (12)

where αk
t , β

k
t are the parameters applied in state St to classes first

learned in state Sk .
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Class-Incremental Learning without memory
TransIL: Dataset Knowledge Transfer for Class IL (WACV 2022)

• Dataset knowledge transfer

Overview of TransIL
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Class-Incremental Learning without memory
TransIL: Dataset Knowledge Transfer for Class IL (WACV 2022)

• Effect on classification scores

LwF (Li and Hoiem, 2016) LUCIR (Hou et al., 2019)
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4. Continual Learning for Object Detection
on the Edge
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Continual Learning for Object Detection on the Edge
Context Adaptation with Continual Learning

Object Detection: From generic to specific
▶ Adapt pretrained models to specialized domains (fixed camera, few

set of classes, fixed context...)
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Continual Learning for Object Detection on the Edge
Context Adaptation with Continual Learning

Challenges
▶ Data is not annotated
▶ Limited resources in memory and computational power
▶ Overfitting
▶ Catastrophic Forgetting (Mccloskey and Cohen, 1989)
▶ Domain shift, low image resolution ...etc
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Continual Learning for Object Detection on the Edge
Context Adaptation with Continual Learning

Classical solution: infer a large model on the cloud
▶ (+) Excellent performance
▶ (+) Straight forward deployment
▶ (−) Data sent to the cloud → not GDPR compliant
▶ (−) Frequent internet access
▶ (−) High cost
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Continual Learning for Object Detection on the Edge
Context Adaptation with Continual Learning

Wanted solution: infer tiny model on the edge
▶ (+) Straight forward deployment
▶ (+) GDPR compliant
▶ (+) No internet access
▶ (+) Low cost
▶ (−) Very poor performance
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Continual Learning for Object Detection on the Edge
Context Adaptation with Continual Learning

Solution 1: run both large and tiny model on the edge
▶ (+) Good performance
▶ (+) GDPR compliant
▶ (+) No internet access
▶ (+) Low cost
▶ (−) Assumes that the large model can fit the edge device
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Continual Learning for Object Detection on the Edge
Context Adaptation with Continual Learning

Solution 2: run only part of large model on the edge
▶ (+) Good performance
▶ (+) GDPR compliant
▶ (+) Energy consumption
▶ (−) Frequent internet access
▶ (−) Cloud cost
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Experiments and Results
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Experiments and Results
Experimental protocol

• Evaluation of DeeSIL, IL2M , ScaIL, and SIW

Dataset #Train #Test #Classes µ(train) σ(train)
ILSVRC (Russakovsky et al., 2015) 1,231,167 50,000 1,000 1231.2 70.2
VGGFACE2 (Cao et al., 2018) 491,746 50,000 1,000 491.7 49.4
LANDMARKS (Noh et al., 2017) 374,367 20,000 1,000 374.4 103.8
CIFAR-100 (Krizhevsky, 2009) 50,000 10,000 100 500.00 0.00

Summary of the datasets used for evaluation

▶ Architecture: a ResNet-18 network

▶ Memory size : |K| = {2%, 1%, 0.5%} of the training set, and no
memory.

▶ Number of states: T = {10, 20, 50}
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Experiments and Results
Experimental protocol

• Evaluation of TransIL

10 Reference datasets

10 random 100 leaf classes from ImageNet (Deng et al., 2009)
Train 500 images per class
Val 200 images per class

4 Test datasets

CIFAR-100 (Krizhevsky, 2009), IMN-100 (Deng et al., 2009),
BIRDS-100 (Deng et al., 2009), FOOD-100 (Bossard et al., 2014)
Train 500 images per class
Test 100 images per class

▶ Architecture: a ResNet-18 network

▶ No memory of the past

▶ Number of states: T = {5, 10, 20}
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Experiments and Results
Experimental protocol

Evaluation of Object Detection Model

Dataset Total hours # splits # train (mn) # val (mn) classes

10 10 40 20 car

Set Total frames 1 frame per second 1 frame per two seconds

Train 72000 1200 600

Val 36000 × 300

▶ Large model: YOLO-V4

▶ Small model: MobileNet-V1 + SSD with FPN
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Experiments and Results
Experimental protocol

• Class-IL baselines - with memory

Method works without memory?
FT ✓
FR ✓
iCaRL (Rebuffi et al., 2017) LwF (Li and Hoiem, 2016)
LUCIR (Hou et al., 2019) ✓
BiC (Wu et al., 2019) ×
REMIND (Hayes et al., 2019) ✓

• Class-IL baselines - without memory

▶ FT , FR, LwF (Li and Hoiem, 2016), LUCIR (Hou et al., 2019),
REMIND (Hayes et al., 2019)

▶ FT+ (Masana et al., 2021)

▶ Deep-SLDA (Hayes and Kanan, 2019)
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Experiments and Results
Experimental protocol

• Plugins applied on top of Class-IL FT

▶ init - use of initial classifiers of past classes (used in ScaIL and SIW )

▶ L2 - L2 normalization of the weights matrix

▶ mc - mean state calibration (used in IL2M and SIW )

▶ th - threshold calibration (Buda et al., 2018)

▶ BAL - balanced fine tuning (Castro et al., 2018)

▶ NEM - nearest exemplars mean (Rebuffi et al., 2017)

• Upper bound of Class IL

▶ Joint - full training with all data

Eden BELOUADAH April 20th, 2023 49 / 60



Experiments and Results
Experimental protocol

• Class-IL Evaluation metrics

▶ Average incremental accuracy (Castro et al., 2018)

▶ GIL aggregation measure

GIL =
1

C
×

C∑
c=1

A(c)− A(Joint)

Amax − A(Joint)
(13)

C - number of tested configurations; A(c) - accuracy of each
configuration ; A(Joint) - accuracy of Joint ; Amax = 100

• Object Detection metric

▶ Mean Average Precision at [0.5:0.05:0.95] IoU thresholds
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Results and discussion
Class-Incremental Learning with memory
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Results and discussion
Class-Incremental Learning without memory
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Results and discussion
Class-Incremental Learning without memory
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Results and discussion
Continual Learning for Object Detection on the Edge

• Results without Continual Learning
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Results and discussion
Continual Learning for Object Detection on the Edge

• Results with Continual Learning
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Conclusions and future work
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Conclusions

▶ In fine tuning, the classification layer is the most affected
by catastrophic forgetting

▶ Fine-tuning-based methods are the best option when a
memory is allowed

▶ Fixed representations are an appropriate choice without
memory

▶ Usefulness of distillation is reduced at large scale

▶ We reduce the model’s footprint by half compared to
distillation-based methods

▶ In object detection, transfer learning is useful to tackle both
overfitting and forgetting
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Future work

▶ Focus more on continual learning without memory

▶ Find or create challenging datasets for continual learning

▶ Propose a class-incremental method for object detection
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Thank you!
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Appendix
State of the art

Fixed-Representation-based methods:
DeeSIL (Belouadah and Popescu, 2018), Deep-SLDA (Hayes and Kanan,
2019), REMIND (Hayes et al., 2019), FearNet Kemker and Kanan, 2018.

Fine-Tuning-based methods:
DGM (Ostapenko et al., 2019), DGR (Shin et al., 2017), GMNF (Cong
et al., 2020), LwF (Li and Hoiem, 2016), EWC (Kirkpatrick et al.,
2016), MAS (Aljundi et al., 2018), BiC (Wu et al., 2019), MDF (Zhao
et al., 2020), LUCIR (Hou et al., 2019), iCaRL (Rebuffi et al., 2017),
E2EIL (Castro et al., 2018).

Parameter-isolation-based methods:
PackNet (Mallya and Lazebnik, 2018), PiggyBack (Mallya et al., 2018),
TFM (Masana et al., 2020), Expert − Gate (Aljundi et al., 2017), PNN
(Rusu et al., 2016), DAN (Rosenfeld and Tsotsos, 2017).
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(c)

Mean feature similarities between incremental states for test images of the first state.
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Additional Storage of our methods

Method
Additional Storage (AS)

in float
AS for NT = 1000

T = 5 T = 10 T = 20 T = 50 T = 100
DeeSIL 0 0 0 0 0 0
IL2M T + NT 4.02 KB 4.04 KB 4.08 KB 4.2 KB 4.4 KB
ScaIL NT × D 2.05 MB 2.05 MB 2.05 MB 2.05 MB 2.05 MB
SIW T + NT × D 2.05 MB 2.05 MB 2.05 MB 2.05 MB 2.05 MB

TransIL (AdBiC ) R × (T + 2)× (T − 1) 1.12 KB 4.32 KB 16.72 KB 101.92 KB 403.92 KB
TransIL (BiC ) 2× R × (T − 1) 320 B 720 B 1.52 KB 3.92 KB 7.92 KB

Additional Storage (AS) of our proposed IL approaches
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Results with other deep architectures

Results with other architectures (Masana et al., 2021)
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