Continual Learning for Image Classification and Object Detection

Eden Belouadah

eb@datakalab.com

April 20th, 2023

 \leftarrow \leftarrow

Continual Learning

E

 299

イロト イ御 トイミトイ

Application examples of continual learning

Robotics

Autonomous cars

Face Recognition

Health

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ) = 19 Q Q Q

Catastrophic forgetting

▶ Tendency of neural networks to underfit past data when new one is ingested

Three Scenarios of Continual Learning

目目 のへぐ

メロトメ 倒 トメ ミトメ 毛

▶ Incremental Learning with memory

▶ Incremental Learning without memory

Memory reduces prediction bias towards new classes

Mean prediction scores of past and new classes with vanilla fine tuning

4日 8

Table of Contents

- [1. State of the art](#page-9-0)
- [2. Class-incremental learning with memory](#page-16-0)
	- [2.1 DeeSIL: Deep-Shallow Incremental Learning](#page-17-0)
	- [2.2 IL2M: Incremental Learning with Dual memory](#page-18-0)
	- [2.3 ScaIL: Classifier weights Scaling for Class IL](#page-21-0)
- [3. Class-incremental learning without memory](#page-25-0)
	- [3.1 SIW: Standardization of Initial Weights for Class IL](#page-26-0)
	- [3.2 TransIL: Dataset Knowledge Transfer for Class IL](#page-31-0)
- [4. Continual Learning for Object Detection on the Edge](#page-36-0)
	- [4.1 Context Adaptation with Continual Learning](#page-37-0)
- [5. Experiments and Results](#page-43-0)
- [6. Conclusions and future work](#page-79-0)

 $E|E$ Ω

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

1. State of the art

重目 のへぐ

メロトメ 倒 トメ ミトメ ミト

[Schema inspired by Lange et al., [2019\]](#page-88-0)

[References are in appendix slides]

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

K ロ X K 個 X X ミ X X ミ X ミ 보 = YO Q O

LwF: Learning without Forgetting (Li and Hoiem, [2016\)](#page-88-1)

• Fine Tuning with distillation loss

$$
\mathcal{L}_t^d(x) = \sum_{(x,y) \in \mathcal{D}_t} \sum_{j=1}^{N_{t-1}} -\hat{\sigma}_{t-1}^j(x) \log[\hat{\sigma}_t^j(x)] \tag{1}
$$

where $\hat{\sigma}$ is the softened softmax

 \blacktriangleright (+) No memory of the past is needed \blacktriangleright (-) The gap with a *Joint* training is large

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ [로] ≥ 19 Q Q

iCaRL: Incremental Classifier and Representation Learning (Rebuffi et al., [2017\)](#page-90-0)

- LwF with memory
- Herding to select exemplars

$$
e \leftarrow \underset{x \in X}{\arg \min} \|\mu - \frac{1}{k}[f(x) + \sum_{j=1}^{k-1} f(e_j)]\|
$$
 (2)

• Nearest Exemplars Mean (NEM)

$$
y^* = \underset{y \in [1, N_t]}{\arg \min} \|f(x) - \mu_y\| \tag{3}
$$

▶ (+) Combination of powerful components ▶ (−) Unfair comparison with baselines

K □ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ - ヨ 님 = K 이 Q (^

LUCIR: Learning a Unified Classifier Incrementally via Rebalancing (Hou et al., [2019\)](#page-87-0)

- Cosine normalization
- Less-forget constraint
- Inter-class separation
	- \blacktriangleright (+) Powerful objective ▶ (−) Important execution time

BiC: Bias Correction (Wu et al., [2019\)](#page-91-0)

- Distillation loss
- Bias-removal layer

$$
BiC(\boldsymbol{o}_t^k) = \left\{ \begin{array}{ll} \boldsymbol{o}_t^k & \text{if } k \in [1, t-1] \\ \alpha_t \boldsymbol{o}_t^k + \beta_t \cdot \mathbf{1} & \text{if } k = t \end{array} \right. \tag{4}
$$

 \blacktriangleright (+) Simple, fast, and accurate ▶ (−) Uses a validation set (memory required)

 $E|E$ Ω

イロト イ押 トイヨ トイヨト

2. Class-incremental learning with memory

目目 のへぐ

メロメメ 倒 メメ ミメメ 毛

Class-Incremental Learning with memory DeeSIL: Deep-Shallow Incremental Learning (W-ECCV 2018)

DeeSIL: Deep-Shallow Incremental Learning (Belouadah and Popescu, [2018,](#page-85-0) W-ECCV)

- Fixed Representation based
- Inspired by transfer learning
- Works with and without memory

 Ω

Class-Incremental Learning with memory IL2M: Incremental Learning with Dual memory (ICCV 2019)

- IL2M: Incremental Learning with Dual memory (Belouadah and Popescu, [2019](#page-85-1), ICCV)
- Fine Tuning based
- Leverages past class statistics

• Past class score rectification

For all past classes $(j = 1, \ldots, N_{t-1})$:

$$
\sigma_t^{j'} = I L 2M(\sigma_t^j) = \begin{cases} \sigma_t^j \times \frac{\mu_t^j}{\mu_t^j} \times \frac{\mu(M_t)}{\mu(M_i)}, & \text{if } pred = new \\ \sigma_t^j, & \text{otherwise} \end{cases}
$$
(5)

with:

- \blacktriangleright *i* the initial state in which the *j*th class was learned
- \blacktriangleright t the current incremental state
- \blacktriangleright o_t^j the raw prediction the j^{th} class in the current state t
- \blacktriangleright μ_i^j and μ_t^j the mean classification scores of the j^{th} class in states i and t
- \blacktriangleright $\mu(\mathcal{M}_t)$ and $\mu(\mathcal{M}_i)$ the model mean score in states t and i

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ) = 19 Q Q Q

Class-Incremental Learning with memory

IL2M: Incremental Learning with Dual memory (ICCV 2019)

• $Effect of $II2M$$

K ロ ▶ K 何 ▶

 \rightarrow \equiv

 QQQ

Class-Incremental Learning with memory ScaIL: Classifier weights Scaling for Class IL (WACV 2020)

ScaIL: Classifier weights Scaling for Class IL (Belouadah and Popescu, [2020,](#page-85-2) WACV)

- Fine Tuning based
- Forgetting happens mainly in the final layer
- Features are usable across incremental states

 Ω

Class-Incremental Learning with memory ScaIL: Classifier weights Scaling for Class IL (WACV 2020)

• Past class weights replay

Overview of ScaIL

 QQ

イロト イ御 トイミトイ

• Sort class weights

$$
\widehat{\mathbf{W}}_t^j = \text{sort}(|w_j^1|, |w_j^2|, ..., |w_j^d|, ..., |w_j^D|) \; ; j \in [N_{t-1}, N_t], d \in [1, D] \; (6)
$$

 $\widehat{\mathbf{W}}_t^j$ is the sorted version of the initial weights vector of new class j.

• Compute state mean vector

$$
\mu_t^d = \frac{1}{P_t} \times \sum_{j=N_{t-1}}^{N_t} \widehat{w}_j^d \qquad d \in [1, D] \tag{7}
$$

where μ_t (of dimension D) is the mean vector of the ranked new classes' weights in the state \mathcal{S}_t , and d is a dimension in the feature vector.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 그리엄 K 9 Q @

Class-Incremental Learning with memory ScaIL: Classifier weights Scaling for Class IL (WACV 2020)

• Normalize past class weights

$$
w_j^{d'} = \frac{\mu_t^{R(d)}}{\mu_i^{R(d)}} \times w_j^d \tag{8}
$$

 w_j^d $^{^{\prime}}$ is the scaled version of w_{j}^{d} , the d^{th} dimension of the initial classifier W_i^j of the j^{th} past class.

- 25 25 $|\mathcal{K}|$ = 5000 $|\mathcal{K}|$ = 5000 20 20 Mean score Mean score 15 15 10 10 Past classes New classes Past classes New classes 5 \mathbf{a} $\overline{2}$ 3 8 9 Incremental state Incremental state
Before Manus After
- Effect of Scall

Eden BELOUADAH April 20th, 2023 25 / 60

2. Class-incremental learning without memory

目目 のへぐ

メロメメ 倒 メメ ミメメ 毛

Class-Incremental Learning without memory SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

SIW: Standardization of Initial Weights for Class Incremental Learning (Belouadah et al., [2020,](#page-86-0) BMVC)

- Fine Tuning based
- Bias in the mean weights magnitudes

Mean weights magnitudes without memory

 \leftarrow \Box \rightarrow \leftarrow \Box

Class-Incremental Learning without memory SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

• Past class weights replay

Overview of SIW

 209

 \leftarrow \leftarrow

Class-Incremental Learning without memory SIW: Standardization of Initial Weights for Class IL (BMVC 2020)

• Classifier weights distribution

• Standardization of Initial Weights

$$
w'_d = \frac{w_d - \mu(\mathbf{W})}{\sigma(\mathbf{W})} \tag{9}
$$

with:

 w_d is the d^{th} dimension of an initial classifier \bm{W} , $\mu(\bm{W})$ and $\sigma(\bm{W})$ are the mean and standard deviation of W.

• State-level calibration

$$
o_t^j(x) = (\mathbf{f_t}(x) \cdot \mathbf{W_t^{j'}} + b_j^i) \times \frac{\mu(\mathcal{M}_t)}{\mu(\mathcal{M}_i)}
$$
(10)

 $\mu(\mathcal{M}_t)$ and $\mu(\mathcal{M}_i)$ are means of top-1 predictions of models learned in the t^{th} and i^{th} states

K □ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ - ヨ 님 = K 이 Q (^

• Effect of SIW on weights magnitudes

 209

K ロ ▶ K 何 ▶

 \rightarrow \equiv

Class-Incremental Learning without memory TransIL: Dataset Knowledge Transfer for Class IL (WACV 2022)

TransIL: Dataset Knowledge Transfer for Class IL (Slim et al., [2022,](#page-91-1) WACV)

- Fine Tuning based
- Bias in the mean classification scores after LwF and LUCIR

Mean prediction scores and standard deviation

 $E|E \cap Q$

メロトメ 伊 トメ ミトメ ミト

Enable the use of Bias Correction layers in a memoryless scenario

• BiC : Bias Correction (Wu et al., [2019\)](#page-91-0)

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ - ヨ(ヨ) K) Q Q @

• adBiC : Adaptive Bias Correction (proposed)

$$
adBiC(\boldsymbol{o}_t^k) = \alpha_t^k \boldsymbol{o}_t^k + \beta_t^k \cdot \mathbf{1} \; ; \; k \in [1, t] \tag{12}
$$

where α^k_t , β^k_t are the parameters applied in state \mathcal{S}_t to classes first learned in state S_k .

 QQ

イロト イ押 トイヨ トイヨト

Class-Incremental Learning without memory TransIL: Dataset Knowledge Transfer for Class IL (WACV 2022)

• Dataset knowledge transfer

Class-Incremental Learning without memory TransIL: Dataset Knowledge Transfer for Class IL (WACV 2022)

• Effect on classification scores

4日 8

 \rightarrow \equiv

 QQ
メロトメ 倒 トメ ミトメ ミト

重目 のへぐ

Context Adaptation with Continual Learning

Object Detection: From generic to specific

▶ Adapt pretrained models to specialized domains (fixed camera, few set of classes, fixed context...)

Object Detector

Input Image

Prediction

Source dataset

Target

Context Adaptation with Continual Learning

Challenges

- \blacktriangleright Data is not annotated
- ▶ Limited resources in memory and computational power
- ▶ Overfitting
- ▶ Catastrophic Forgetting (Mccloskey and Cohen, [1989\)](#page-89-0)
- \triangleright Domain shift, low image resolution ...etc

Source dataset

Target dataset

メロトメ 倒 トメ ミトメ ミト

 $E|E \cap Q \cap Q$

Context Adaptation with Continual Learning

Classical solution: infer a large model on the cloud

- \blacktriangleright (+) Excellent performance
- \blacktriangleright (+) Straight forward deployment
- ▶ (-) Data sent to the cloud \rightarrow not GDPR compliant
- ▶ (−) Frequent internet access
- \blacktriangleright (-) High cost

Context Adaptation with Continual Learning

Wanted solution: infer tiny model on the edge

- \blacktriangleright (+) Straight forward deployment
- \blacktriangleright (+) GDPR compliant
- \blacktriangleright (+) No internet access
- \blacktriangleright (+) Low cost
- ▶ (−) Very poor performance

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 $E|E \cap Q \cap Q$

Context Adaptation with Continual Learning

Solution 1: run both large and tiny model on the edge

- \blacktriangleright (+) Good performance
- \blacktriangleright (+) GDPR compliant
- $(+)$ No internet access
- \blacktriangleright (+) Low cost
- \blacktriangleright (-) Assumes that the large model can fit the edge device

Context Adaptation with Continual Learning

Solution 2: run only part of large model on the edge

- \blacktriangleright (+) Good performance
- \blacktriangleright (+) GDPR compliant
- \blacktriangleright (+) Energy consumption
- ▶ (−) Frequent internet access
- ▶ (−) Cloud cost

 QQ

Experiments and Results

メロメメ 倒 メメ ミメメ ミメ

重目 のへぐ

• Evaluation of DeeSIL, IL2M, ScalL, and SIW

Summary of the datasets used for evaluation

- ▶ Architecture: a ResNet-18 network
- ▶ Memory size : $|K| = \{2\%, 1\%, 0.5\%\}$ of the training set, and no memory.
- ▶ Number of states: $\mathcal{T} = \{10, 20, 50\}$

 $E|E$ Ω

イロト イ押 トイヨ トイヨト

• Evaluation of TransIL

10 Reference datasets

4 Test datasets

- ▶ Architecture: a ResNet-18 network
- ▶ No memory of the past
- ▶ Number of states: $\mathcal{T} = \{5, 10, 20\}$

|星|≡ の∝⊙

メロトメ 伊 トメ ミトメ ミト

Evaluation of Object Detection Model

Morning view

Night view

メロトメ 伊 トメ ミトメ ミト

▶ Large model: YOLO-V4

 \triangleright Small model: MobileNet-V1 $+$ SSD with FPN

 $E|E \cap Q$

• Class-IL baselines - with memory

• Class-IL baselines - without memory

- ▶ FT, FR, LwF (Li and Hoiem, [2016\)](#page-88-1), LUCIR (Hou et al., [2019\)](#page-87-1), REMIND (Hayes et al., [2019\)](#page-87-2)
- \blacktriangleright FT+ (Masana et al., [2021\)](#page-89-2)
- ▶ Deep-SLDA (Hayes and Kanan, [2019\)](#page-87-3)

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ [로] ≥ 19 Q @

- Plugins applied on top of Class-IL FT
	- ▶ init use of initial classifiers of past classes (used in ScalL and SIW)
	- \triangleright L2 L2 normalization of the weights matrix
	- \triangleright mc mean state calibration (used in IL2M and SIW)
	- \triangleright th threshold calibration (Buda et al., [2018\)](#page-86-2)
	- ▶ **BAL** balanced fine tuning (Castro et al., [2018\)](#page-86-3)
	- ▶ NEM nearest exemplars mean (Rebuffi et al., [2017\)](#page-90-1)
- Upper bound of Class IL
	- \triangleright Joint full training with all data

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ [로] ≥ 19 Q @

- Class-IL Evaluation metrics
	- ▶ Average incremental accuracy (Castro et al., [2018\)](#page-86-3)
	- \blacktriangleright G_{II} aggregation measure

$$
G_{IL} = \frac{1}{C} \times \sum_{c=1}^{C} \frac{A(c) - A(Joint)}{A_{max} - A(Joint)}
$$
(13)

C - number of tested configurations; $A(c)$ - accuracy of each configuration ; A(Joint) - accuracy of Joint ; $A_{max} = 100$

- Object Detection metric
	- ▶ Mean Average Precision at [0.5:0.05:0.95] IoU thresholds

K □ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그러는 K Q Q @

重目 のへぐ

メロトメ 御 トメ ミトメ ミト

重目 のへぐ

メロトメ 御 トメ ミトメ ミト

K ロ ▶ K 御 ▶ K ミ ▶ K 듣

K ロ ▶ K 御 ▶ K ミ ▶ K 듣

K ロ ▶ K 御 ▶ K ミ ▶ K 듣

K ロ ▶ K 御 ▶ K ミ ▶ K 듣

K ロ ▶ K 御 ▶ K ミ ▶ K 듣

重目 のへぐ

メロトメ 伊 トメ ミトメ ミト

gains, losses

gains, losses

gains, losses

gains, losses

gains, losses

gains, losses

gains, losses

gains, losses

gains, losses

gains, losses

Results and discussion

Continual Learning for Object Detection on the Edge

• Results without Continual Learning

 QQ

E

Results and discussion

Continual Learning for Object Detection on the Edge

• Results with Continual Learning

 $E|E \cap Q \cap Q$

Conclusions and future work

重目 のへぐ

メロトメ 倒 トメ ミトメ ミト

Conclusions

- \blacktriangleright In fine tuning, the classification layer is the most affected by catastrophic forgetting
- ▶ Fine-tuning-based methods are the best option when a memory is allowed
- ▶ Fixed representations are an appropriate choice without memory
- \triangleright Usefulness of distillation is reduced at large scale
- \triangleright We reduce the model's footprint by half compared to distillation-based methods
- \blacktriangleright In object detection, transfer learning is useful to tackle both overfitting and forgetting

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 그리엄 K 9 Q @

- ▶ Focus more on continual learning without memory
- \triangleright Find or create challenging datasets for continual learning
- ▶ Propose a class-incremental method for object detection

 $E|E \cap Q \cap Q$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Thank you!

重目 のへぐ

メロメメ 倒 メメ ミメメ ミメ

Appendix

K ロ K K 伊 K K ミ K K モ K 三 ヨ ヨ タダウ

Fixed-Representation-based methods:

DeeSIL (Belouadah and Popescu, [2018\)](#page-85-0), Deep-SLDA (Hayes and Kanan, [2019\)](#page-87-0), REMIND (Hayes et al., [2019\)](#page-87-1), FearNet Kemker and Kanan, [2018.](#page-88-0)

Fine-Tuning-based methods:

DGM (Ostapenko et al., [2019\)](#page-90-0), DGR (Shin et al., [2017\)](#page-90-1), GMNF (Cong et al., [2020\)](#page-87-2), LwF (Li and Hoiem, [2016\)](#page-88-1), EWC (Kirkpatrick et al., [2016\)](#page-88-2), MAS (Aljundi et al., [2018\)](#page-85-1), BiC (Wu et al., [2019\)](#page-91-0), MDF (Zhao et al., [2020\)](#page-91-1), LUCIR (Hou et al., [2019\)](#page-87-3), iCaRL (Rebuffi et al., [2017\)](#page-90-2), E2EIL (Castro et al., [2018\)](#page-86-0).

Parameter-isolation-based methods:

PackNet (Mallya and Lazebnik, [2018\)](#page-89-0), PiggyBack (Mallya et al., 2018), TFM (Masana et al., [2020\)](#page-89-1), Expert – Gate (Aljundi et al., [2017\)](#page-85-2), PNN (Rusu et al., [2016\)](#page-90-3), DAN (Rosenfeld and Tsotsos, [2017\)](#page-90-4).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

Bibliography

- [1] Rahaf Aljundi et al. "Expert Gate: Lifelong Learning with a Network of Experts". In: Conference on Computer Vision and Pattern Recognition. CVPR. 2017.
- [2] Rahaf Aljundi et al. "Memory Aware Synapses: Learning What (not) to Forget". In: Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III. Ed. by Vittorio Ferrari et al. Vol. 11207. Lecture Notes in Computer Science. Springer, 2018, pp. 144–161.
- [3] Eden Belouadah and Adrian Popescu. "DeeSIL: Deep-Shallow Incremental Learning". In: TaskCV Workshop @ ECCV 2018. (2018).
- [4] Eden Belouadah and Adrian Popescu. "Il2m: Class incremental learning with dual memory". In: Proceedings of the IEEE International Conference on Computer Vision. 2019, pp. 583–592. [5] Eden Belouadah and Adrian Popescu. "ScaIL: Classifier Weights Scaling for Class Incremental Learning". In: The IEEE Winter Conference on Applications of Computer Vision (WACV). Mar. 2020.

- [6] Eden Belouadah et al. "Initial Classifier Weights Replay for Memoryless Class Incremental Learning". In: British Machine Vision Conference (BMVC). 2020.
- [7] Lukas Bossard et al. "Food-101 Mining Discriminative Components with Random Forests". In: European Conference on Computer Vision. 2014.
- [8] Mateusz Buda et al. "A systematic study of the class imbalance problem in convolutional neural networks". In: Neural Networks 106 (2018), pp. 249–259.
- [9] Qiong Cao et al. "VGGFace2: A Dataset for Recognising Faces across Pose and Age". In: 13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018, Xian, China, May 15-19, 2018. 2018, pp. 67–74.
- [10] Francisco M. Castro et al. "End-to-End Incremental Learning". In: Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XII. 2018, pp. 241–257.

- [11] Yulai Cong et al. "GAN Memory with No Forgetting". In: CoRR abs/2006.07543 (2020).
- [12] Jia Deng et al. "ImageNet: A large-scale hierarchical image database". In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA. 2009, pp. 248–255.
- [13] Tyler L. Hayes and Christopher Kanan. "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis". In: CoRR abs/1909.01520 (2019).
- [14] Tyler L. Hayes et al. "REMIND Your Neural Network to Prevent Catastrophic Forgetting". In: CoRR abs/1910.02509 (2019).
- [15] Saihui Hou et al. "Learning a Unified Classifier Incrementally via Rebalancing". In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. 2019, pp. 831–839.

- [16] Ronald Kemker and Christopher Kanan. "FearNet: Brain-Inspired Model for Incremental Learning". In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. 2018.
- [17] James Kirkpatrick et al. "Overcoming catastrophic forgetting in neural networks". In: CoRR abs/1612.00796 (2016).
- [18] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. University of Toronto, 2009.
- [19] Matthias De Lange et al. "Continual learning: A comparative study on how to defy forgetting in classification tasks". In: CoRR abs/1909.08383 (2019).
- [20] Zhizhong Li and Derek Hoiem. "Learning Without Forgetting". In: European Conference on Computer Vision. ECCV. 2016.
- [21] Arun Mallya and Svetlana Lazebnik. "PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning". In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. 2018, pp. 7765–7773.

- [22] Arun Mallya et al. "Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights". In: ECCV (4). Vol. 11208. Lecture Notes in Computer Science. Springer, 2018, pp. 72–88.
- [23] Marc Masana et al. Class-incremental learning: survey and performance evaluation on image classification. 2021. arXiv: [2010.15277 \[cs.LG\]](https://arxiv.org/abs/2010.15277).
- [24] Marc Masana et al. "Ternary Feature Masks: continual learning without any forgetting". In: $CoRR$ abs/2001.08714 (2020). URL: <https://arxiv.org/abs/2001.08714>.
- [25] Michael Mccloskey and Neil J. Cohen. "Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem". In: The Psychology of Learning and Motivation 24 (1989), pp. 104–169.
- [26] Hyeonwoo Noh et al. "Large-Scale Image Retrieval with Attentive Deep Local Features". In: ICCV. IEEE Computer Society, 2017, pp. 3476–3485.

- [27] Oleksiy Ostapenko et al. "Learning to Remember: A Synaptic Plasticity Driven Framework for Continual Learning". In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2019, pp. 11321–11329.
- [28] Sylvestre-Alvise Rebuffi et al. "iCaRL: Incremental Classifier and Representation Learning". In: Conference on Computer Vision and Pattern Recognition. CVPR. 2017.
- [29] Amir Rosenfeld and John K. Tsotsos. "Incremental Learning Through Deep Adaptation". In: CoRR abs/1705.04228 (2017).
- [30] Olga Russakovsky et al. "ImageNet Large Scale Visual Recognition Challenge". In: International Journal of Computer Vision 115.3 (2015), pp. 211–252.
- [31] Andrei A. Rusu et al. "Progressive Neural Networks". In: CoRR abs/1606.04671 (2016).
- [32] Hanul Shin et al. "Continual Learning with Deep Generative Replay". In: NIPS. 2017, pp. 2994–3003.

- [33] Habib Slim et al. "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory". In: The IEEE Winter Conference on Applications of Computer Vision (WACV). 2022.
- [34] Yue Wu et al. "Large Scale Incremental Learning". In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. 2019, pp. 374–382. [35] Bowen Zhao et al. "Maintaining Discrimination and Fairness in Class Incremental Learning". In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 2020, pp. 13205–13214.

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ [로] ≥ 19 Q ⊙

Backup Slides

メロトメ 倒 トメ ミトメ ミト

重目 のへぐ

Backup Slides

Mean Features Similarity

Mean feature similarities between incremental states for test images of the first state.

目目 のへぐ

メロメメ 倒 メメ ミメメ 毛

Additional Storage of our methods

Additional Storage (AS) of our proposed IL approaches

目目 のへぐ

メロトメ 御 トメ ミトメ ミト

Backup Slides

Results with other deep architectures

Number of parameters (in millions)

Results with other architectures (Masana et al., [2021\)](#page-89-2)